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Abstract— Water pollution has caused increased incidence of
algal growth around the globe. Harmful algae blooms result
in massive economic losses. In this paper, a multi-robot based
task planner is designed to remove excessive algae from water
bodies and to identify algae build-up so that prompt action
can be taken against its accumulation. Computer vision is
incorporated to enable algae detection and area estimation
based on training, comparing, and evaluating various advanced
deep learning models using our custom algae dataset. We
further propose a novel algorithm for robot resource allocation
between bounding boxes of detected algae based on multi-
variable optimization. This systematic solution is evaluated in
a simulated environment, demonstrating how the robots are
optimally assigned to the detected algae patches for algae
removal.

Index Terms— Deep Learning, Computer Vision, Algae re-
moval, Multi-robot systems, Resource allocation, Optimization

I. INTRODUCTION

Algae are primarily aquatic, uni- or multi-cellular or-
ganisms that contain chlorophyll [1]. In a healthy aquatic
environment, algae are primary producers and therefore a
critical foundation of the food chain. Algae also benefit
humans by reducing the level of greenhouse gases in the
atmosphere by fixing large quantities of CO2 in the oceans
[2], serving as a source of energy in the form of bio fuels, and
acting as a cheap but highly effective means for wastewater
treatment [3].

Under congenial ecological conditions, however, the rate
of algae proliferation can increase exponentially, resulting
in the formation of large algal coloniessometimes covering
many square kilometers. Such colonies are known as harmful
algal blooms (HABs). They have been found to be respon-
sible for releasing paralytic, neurotoxic, diarrhetic, amnesic,
and azaspiracid toxins, leading to the deaths of fishes, sea
mammals, birds, and even humans [4].

Hence, it is extremely important that ponds, lakes, and
rivers are constantly monitored and that prompt action is
taken against any abnormal algae buildup. Currently, a
highly promising solution to cleanup and monitoring of algae
blooms is to use unmanned water surface vehicles (USVs)
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Fig. 1. Demonstration of image capture of an algae patch using a drone.
Our proposed system detects algae using deep learning. The system also
allocates robots to detected bounding boxes to remove the algae.

[5] and underwater vehicles [6] equipped with sensors and
removal end-effectors. Unmanned aerial vehicles (UAVs) can
be used to monitor algae blooms and provide a global map
for USV distribution [5].

As a concrete solution to task planning for algae removal
using multi-robot teams, this paper contributes to the research
community in the following ways:

• We introduce a computer vision-based algae removal
planner for use with multi-robot teams.

• We develop a computer vision algorithm based on deep
learning that can accurately detect and locate algae
in water bodies, irrespective of variation in camera
parameters, environmental conditions, orientation of the
captured image, or the presence of significant back-
ground clutter in the form of vegetation, buildings, etc.

• We introduce a resource allocation algorithm that uses
the proposed computer vision algorithm in a multi-robot
environment.

This paper is organized as follows: In Section II, we
describe current algae monitoring systems and their short-
comings. Section III presents our proposed solution for algae
detection and removal using deep learning. In Section IV,
we evaluate system performance and analyze the results
obtained, followed by presentation of the conclusion and
future works in Section V.

II. RELATED WORK

The coupling of human-caused effects such as eutrophica-
tion by agricultural runoff, dumping of untreated industrial



and household effluents, and transportation of foreign algae
species in ballast water with natural phenomena such as
storms, tsunamis, currents [7], and global warming has been
cited as the root cause for the rising incidence of HABs
in water bodies around the globe. This rising incidence
has increased the relevance of effective algae monitoring
methodologies in the modern world.

Algae monitoring techniques can be roughly classified
into three categories: in-situ sampling, computer vision-based
techniques, and hyperspectral remote sensing using satellite
or aircraft.

A. In-situ Sampling

In-situ sampling is effected through performing on-site
sampling and then transporting those samples to laboratories
for further evaluation. Although on-site sampling is done at
regular intervals, this methodology is extremely time- and
labor-intensive. Also, the possibility of contaminated samples
negatively affecting observations is high [8].

B. Computer Vision based Techniques

Computer vision-based algae monitoring systems have
been developed that exploit the distinctive green or greenish-
blue color characteristic of algae. However, such traditional
computer vision pipelines do not have high repeatability;
they depend significantly on the effectiveness of their fea-
ture detectors or their segmentation procedures. These can
be rendered ineffective by environmental conditions such
as fluctuating illumination, occlusion, or the presence of
comparable objects in the background.

The algae monitoring system in study [9] uses a combina-
tion of color-based segmentation, species-specific features,
and an underwater camera; this implies that it cannot be
applied on a different hardware platform such as an UAV,
USV, or smartphone, and also that it is susceptible to
occlusion and variations in illumination, which are regular
occurrences in an outdoor environment. Similarly, the novel
approach presented in the paper [10], which combines the use
of a smartphone camera and the inertial sensors present on a
robotic fish to detect the shoreline and subsequently perform
image segmentation to detect algal blooms, is optimized for
their specific hardware platform (i.e. robotic fish) and is
susceptible to variable illumination, occlusion, and shadows
cast by surrounding vegetation.

Similar limitations can also be observed in the work of
[11], which made use of a local binary pattern texture detec-
tor to detect algae. However, the authors only utilized a UAV
platform and have not described their systems performance
in the event of using images taken from different orientations
or higher elevations. Also, considering that their detector is
only trained on iconic images of algae, grass and water,
they have not presented any results describing the impact
of comparable objects such as trees, plants, and seaweeds
present in image backgrounds on their algae monitoring
system.

Similarly, the authors of [12] only considered images taken
from the ground and did not describe the speed with which

their vision system could detect algae. Hence, it is difficult to
ascertain whether this method could be employed on mobile
platforms such as UAVs, USVs, and airplanes, which operate
in different environments.

C. Satellite Remote Sensing

Satellite-based remote sensing for algae monitoring makes
use of the increase in diffused reflectance caused by the pres-
ence of algal pigment in a body of water [13]. Spectral data is
used as input for detection methods such as reflectance clas-
sification algorithms, reflectance band-ratio algorithms and
spectral band difference algorithms [14]. However, although
the aforementioned algorithms are successful at monitoring
algal blooms in the open ocean, they have been ineffective
when applied to coastal water and bodies of water with
significant human activity because the presence of organic
material and suspended particles distorts the reflectance
spectrum. Also, issues such as unavailability of real-time
data, irregular site revisit times, low resolution of publicly-
available satellite products such as LANDSAT or MODIS
(> 30m), and exorbitant costs of proprietary systems such
as QuickBird [15] make the use of satellite imagery difficult
for a general-purpose algae monitoring system.

Hence, an economically feasible algae detection and re-
moval planner that can be used on a wide variety of plat-
forms (e.g. UAVs, USVs, airplanes, and even smartphones)
would significantly facilitate administrators and civilians in
removing algae blooms and monitoring water bodies. The
development of such a system is the major contribution
of this paper. To strengthen the utility of this system, we
consider a multi-robot application scenario in which we
use global images of the workspace taken from UAVs and
detect algae patches in the water using an object detection
model. Multi-robots in the water body are assigned to these
algae patches by the proposed resource allocation algorithm.
After reaching the algae patches, the robots can perform
appropriate actions based on their capabilities. Fig. 1 presents
an overview of the system we propose in this paper.

III. WORK-FLOW OF THE PROPOSED TASK PLANNER

The proposed algae removal task planner mainly consists
of two layers: the Algae Detection Layer and the Multi-
robot Planner Layer. The system workflow we developed
is depicted in Fig. 2, with individual steps described in the
following subsections.

A. Algae Detection Layer

1) Dataset and Labelling: For the purpose of this re-
search, we collected a dataset of images taken from ground
and aerial vehicles depicting algae in pools, lakes, ponds, etc.
The distribution of images across training and testing sets is
shown in Table I. These images were collected with a variety
of resources, and priority was given to generating a diverse
dataset. We collected some of the images ourselves, obtained
some from online resources, and generated some through
artificial simulations. We utilized the Tensorflow Object
Detection API to train our chosen models to detect algae



Fig. 2. Workflow of the proposed algae removal planner. Its components can broadly be categorized into the Algae Detection Layer and the Multi-robot
Planner Layer.

[16]. The Tensorflow Object Detection API is an open source
framework based on the tensorflow library that provides a
well-structured environment for developing, training, testing,
and deploying deep learning models.

2) Deep Learning Algorithms: An algae monitoring sys-
tem that conceivably could be used from mobile platforms
such as USVs, UAVs, airplanes, etc. has to detect and locate
algae at near real-time speeds with high accuracy. Models
using Faster R-CNN [17], Single Shot Detector (SSD) [17],
and Region-based Fully Convolutional Networks (R-FCN)
[17] have shown near real-time object detection on con-
ventional datasets such as COCO and PASCAL-VOC with
very high accuracy, making them applicable to our envisaged
scenario. To mitigate the effects of a small training dataset
and to replicate external environmental conditions such as
variable illumination, fluctuating contrast, and blurring, we
augmented our dataset by applying transformations such as
randomly changing the brightness, contrast, hue, color, and
saturation. To customize the pre-trained networks for our
dataset, we applied a decaying learning rate of 10% every

TABLE I
DISTRIBUTION OF IMAGES ACROSS TRAINING, VALIDATION, AND TEST

SETS (D.= DETECTION)

Training Validation Testing (D.)
Ground Images 277 79 41

Aerial Images 150 43 20

5000 steps, and we changed the final layers to reflect that
our dataset contains only one class of objects.

3) Results-Bounding Boxes: After training the model, the
neural network populates a result array with coordinates,
scores, and classes, which can be found in Fig. 3(a), and
number of detections for each frame/image, as shown in Fig.
3(b). We convert the coordinates from this array into appro-
priate bounding boxes by applying the following equation:

Coordinatek = Boxji · ImageWidth (1)

where Coordinatek denotes the current coordinate, k ∈
{left, right, top, bottom}, i denotes the index of Box,
j ∈ {0, 1, 2, 3}, and ImageWidth is the image width.
Subsequently, these image coordinates can then be used to
visualize the predicted bounding boxes, as shown in Fig.
3(b).

B. Multi-robot Planner Layer
To develop a multi-robot planner, we propose a resource

allocation algorithm that assigns robots to detected patches
for the removal of algae.

1) Non-maximum Suppression: One issue that we ob-
served in the object detection results is that the algorithms
R-CNN and R-FCN produced multiple detections on the
same algae patch. This is a consequence of the underlying
workings of neural networks. However, in order to apply our
proposed resource allocation algorithm, an algae patch must
be detected singly. To achieve this, we employed a soft non-
maximum suppression (NMS) algorithm [18]. NMS makes



(a) Results (b) Resultant Image

Fig. 3. Representative results generated by the model and their visualization
on the associated image.

use of scores on each bounding box to remove overlapping
bounding boxes. The results of using this algorithm are
shown in Fig. 4.

2) Resource Allocation Algorithm: Provided M number
of bounding boxes Bi, i ∈ {1, ...,M}, with their areas
denoted as Ai, i ∈ {1, ...,M}, multi-robots can be optimally
allocated among these bounding boxes as resources for
algae cleaning. As an infrastructure of multi-robot allocation,
wirelessly networked robot teams have shown significant
improvement and demonstrated strong capability in tasks
that are similar to our scenario, such as rendezvous control
for surveillance [19], [20], collaborative coverage for spill
cleaning [21], urban search and rescue [22], and unknown
environment exploration [23].

The robot resource allocation should meet the following
three goals:

(i) The allocation should guarantee that at least one robot
is assigned to each bounding box, assuming that the
number of robots N is greater than the number of
bounding boxes M ;

(ii) The total distance traveled by the assigned robots is
minimized; and

(iii) The number of robots assigned to a given bounding box
is proportional to its area.

The first goal guarantees that no bounding box will be ne-
glected. The second goal is to minimize the energy consump-
tion of robots while maneuvering to their assigned bounding
box. The third goal can help in balancing the workload
across all operational robots, because a larger bounding box
may require more effort (e.g. algae volume being collected,
total length of traveled path, etc). As the individual robots
have identical coverage capabilities, deploying a uniform
density of robots to each Box makes the completion time
deterministic.

This paper formulates the proposed resource allocation
problem into a binary integer linear programming (ILP)
problem as below in (2)-(6). The solution was obtained using
a generic ILP solver in MATLAB. Optimization yields a
globally optimal and deterministic solution for the objective
function, which is suitable for the proposed resource alloca-
tion problem.

(a) Without NMS (b) With NMS

Fig. 4. Illustration of the removal of multiple bounding boxes from single
objects by NMS.

min

M∑
j=1

N∑
i=1

zij · ‖dij‖ (2)

subject to

N∑
i=1

zij ≥ 1, ∀j ∈ {1, 2, ...,M}. (3)

M∑
j=1

( Aj∑N
i=1 zij

− ρ
)2
≤ γ2ρ2 (4)

M∑
j=1

zij = 1, ∀i ∈ {1, 2, ..., N} (5)

zij =

{
1, if robot Ri is allocated to Bj ,
0, otherwise,

∀i ∈ {1, 2, ..., N},∀j ∈ {1, 2, ...,M}
(6)

The objective function (2) seeks to minimize the total
traveling displacement of every robot while maneuvering to
its designated bounding box, in keeping with the second
proposed goal. In (2), ‖dij‖ denotes the linear distance from
robot Ri to one of the four bounding boxes Bj , while the
binary variable vector zij is defined in (5). Constraint (3) rep-
resents the first proposed goal and guarantees each bounding
box is attended to by at least one robot. Constraint (4) is to
satisfy the third proposed goal, and allocating a number of
robots proportional to the area of the bounding box. Here, ρ
is the ideal average density of robots in bounding boxes, i.e.
ρ = N∑M

i=1 Ai
, while a coefficient γ is introduced to restrain

the variance of this density among different bounding boxes.
Constraint (5) means that any given robot can be allocated to
only one bounding box, while the last constraint (6) shows
the binary characteristic applied on optimization variables
zij .

3) Robot Path Planning: A robot can move from its
current position to its goal position by applying the artificial
potential field (APF) method, for instance in [21]. Provided



TABLE II
MODEL PERFORMANCE: ACCURACY OF CLASSIFICATION (ACCURACY, PRECISION, AND RECALL), ACCURACY OF DETECTION (VALIDATION MAP

AND TEST MAP), AND SPEED OF THE DETECTION (FPS (GPU) AND FPS (CPU)) (VALID. = VALIDATION)

Accuracy Precision Recall Valid. mAP Test mAP FPS (GPU) FPS (CPU)

Faster R-CNN 72% 74.00% 71.15% 38.68% 23.46% 2.83 0.62

R-FCN 82% 78.33% 90.38% 38.14% 21.44% 2.72 0.58

SSD 50% 52.08% 48.07% 23.72% 17.29% 19.37 5.16

that the robots follow the same single integrator model as in
[21], the control law for each robot is is given as:

U(qi) =
1

2
ξd(qi,q

g
i )

2, (7)

where qi denotes a robot current position, qg
i denotes its

goal position on the boundary of the designated bounding
box, and ξ is a scaling parameter. The input in velocity u
for the robot is therefore the gratitude of (7), i.e.

u = −∇U(qi) = ξ(qg
i − qi). (8)

IV. EVALUATION AND RESULTS

A. Algae Detection Models

In this section, we will describe the results obtained from
three different neural networks using different criteria.

1) Parameters and Hardware Used for Evaluation: Since
our objective was to develop a computer vision system that
can rapidly detect and locate algae in water bodies, we
focused on the following three evaluation metrics:

• Precision and recall – to evaluate the accuracy of our
system in detecting whether a given water body contains
algae or not;

• Mean average precision (mAP) – to evaluate how accu-
rately our system can locate an algal bloom in a water
body;

• Speed to evaluate the speed at which each neural net-
work detects algae, so as to validate the appropriateness
of this approach for use in mobile platforms such as
USVs, UAVs, airplanes, etc.

To evaluate the object detection models, we used a HP
Pavilion laptop that had an Intel(R) Core(TM) i7-6500U
CPU and an NVIDIA GeFORCE 940MX GPU.

2) Algae Detection Results: A reliable algae monitoring
system should have high recall (if algae is present, then the
system should detect it) and high precision (if the presence
of algae is predicted, then algae should in fact be present). To
evaluate the competence of our system in detecting algae, we
performed a binary classification between two sets of images,
one having water bodies containing algae and the other
having water bodies not containing algae. Trained versions of
each model were tested on the aforementioned images, and
their results are given in Table II (see column 2–4). Since
there were only two classes of images, SSD performed very
poorly; its ability to detect algae was akin to that of random
selection, which implies that it is not at all suitable for algae

detection. Meanwhile, Faster R-CNN and R-FCN had nearly
similar Precision values, but the high Recall value of R-FCN
indicates that it is highly robust and nearly always detects
an algae bloom if one is actually present.

Accurate algae localization from an image would enable
us to generate precise world coordinates corresponding to
where the algae blooms are present. To evaluate the detection
accuracy of the three trained models, we used mean average
precision (mAP); these values are presented in Table II
(see column 5 and 6). All three models showed reasonably
acceptable accuracy with regard to algae bloom localization.
Notably, both Faster R-CNN and R-FCN have higher de-
tection accuracy than SSD on both the test and validation
datasets. Also, mAP values are lower for the test dataset
than the validation dataset. We believe this resulted from the
fact that we had chosen the most complex images for the test
dataset, ones containing significant amounts of background
clutter (trees, buildings, roads, etc).

The speed with which each model detected algae in an
input image is also shown in Table II (see the last two
columns). In contrast to results observed for classification
and detection accuracy, SSD outperforms the other two
models in terms of detection speed when using either a CPU
or GPU. Of the three models used here, SSD has the lowest
computational cost [24]. However, seeing as algal blooms
grow in static or slow-moving water bodies, the detection
speeds obtained for all three models are satisfactory for use in
an algal monitoring system, particularly when implemented
on a GPU.

Despite using state-of-art object detection models, we
observed a few occasions in which either algae was not
detected or the surrounding vegetation was labeled as algae,
which could be a topic for further study and refinement.
Some examples are presented in Fig. 5. The most likely cause
for such incidences is that the only defining characteristic of

Fig. 5. Representative images showing incorrect or missed detections of
algae.



algae is its green color; this is also the most common color
found in an outdoor environment. A larger training dataset
that enables the neural network to learn more intricate fea-
tures would be able to detect algae with greater consistency.

We acknowledge that our dataset is small and requires
improvement. We plan to expand the dataset and make it
public when it is ready for broader use. Through the work
described in this paper, we were able to identify the direction
that we need to take to make a robust algae detection model.

B. Resource Allocation Implementation

To exemplify the resource allocation and validate the effec-
tiveness of the optimization method, we simulated pictures of
a lake with algae detected and bounded in M = {2, 3, and 4}
bounding boxes ( Fig. 6) and performed optimization on the
cost function of (2). The optimization results and the process
of robots being driven to the corresponding bounding boxes
were visualized using Robotarium, a 3m× 3m scaled-down
multi-robot testbed [25], which is shown in the last column
of Fig. 6. As illustrated in Fig. 6, N = {10, 20, and 30}
robots were involved in the operation, with their starting
positions randomly distributed throughout the workspace.
The number of robots allocated to each bounding box based
on the optimization are listed in Table III. From the results,
we see that the number of robots allocated for a bounding
box was in proportion to the area of the box. Meanwhile,
compromising with the previous goal, each robot moved in
a shortest distance to its associate box. The allocation results
demonstrate a consistency in terms of different numbers of
bounding boxes and locations.

For all three scenarios, the trajectories by which all robots
maneuvered to their respective goal positions are depicted in
the last column of Fig. 6 for all the three scenarios. More
details can be found in the paper video:
https://youtu.be/bBPMFwSzHz0.

V. CONCLUSION AND FUTURE WORK

In this work, we develop a deep learning-based algae
detector and a multi-robot system-based algae removal plan-
ner. The planner is based on an optimization algorithm and
achieves an optimal resource allocation. For the detection of
algae, we compared state-of-the-art object detectors Faster
R-CNN, R-FCN, and SSD. Our final conclusion is that
an algae monitoring system based on the R-FCN model

TABLE III
NUMBER OF ROBOTS ALLOCATED PER BOUNDING BOX UNDER THREE

DIFFERENT SCENARIOS

Scenario 1
(N=10)

Bounding boxes (2) B1 B2 - -
Areas (m2) 0.541 0.478 N/A N/A
Allocated robots (#) 5 5 N/A N/A

Scenario 2
(N=20)

Bounding boxes (3) B1 B2 B3 -
Areas (m2) 0.475 0.508 0.327 N/A
Allocated robots (#) 8 7 5 N/A

Scenario 3
(N=30)

Bounding boxes (4) B1 B2 B3 B4

Areas (m2) 0.079 0.325 0.193 0.572
Allocated robots (#) 2 9 6 13

would be highly robust, accurate, and rapid, thereby enabling
effective recognition of algae in real time. We anticipate
that these findings will help us develop a more robust algae
detection model. We further demonstrated the efficacy of
the proposed resource allocation optimization method and
virtually verified its capability in diverse environments and
with different settings. Our future works will focus on
improving performance through developing a larger dataset
and implementing field tests. Moreover, we will use this
task planner to facilitate the development of a multi-robot
ecosystem composed of autonomous UAVs and USVs; this
ecosystem would be responsible for monitoring water bodies
and removing HABs in real environments.
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