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Abstract— This paper proposes a new Kalman filter based
online framework to estimate the spatial wireless connectivity
in terms of received signal strength (RSS), which is composed
of path loss and the shadow fading variance of a wireless
channel in autonomous vehicles. The path loss is estimated using
a localized least squares method and the shadowing effect is
predicted with an empirical (exponential) variogram. A discrete
Kalman Filter is used to fuse these two models into a state-
space formulation. The approach is unique in a sense that it
is online and does not require the exact source location to
be known apriori. We evaluated the method using real-world
measurements dataset from both indoors and outdoor environ-
ments. The results show significant performance improvements
compared to state-of-the-art methods using Gaussian processes
or Kriging interpolation algorithms. We are able to achieve a
mean prediction accuracy of up to 96% for predicting RSS as
far as 20 meters ahead in the robot’s trajectory.

I. INTRODUCTION

Autonomous mobile robots rely on wireless communi-
cations to coordinate between vehicles and to successfully
accomplish their tasks. Communications are particularly im-
portant when the task itself is about gathering information
and sharing this information with others, such as connected
self-driving vehicle coordination and urban search and res-
cue (USAR) missions. There, the environments are often
unknown a priori and dynamically changing.

Furthermore, wireless connectivity is complex to predict
not only because the signal decreases over distance (path
loss) and when large objects are obstructing the line of sight
between the transmitter and the receiver (shadowing), but
also because these effects are combined with more complex
phenomena such as spatial and temporal dynamics in the
environments (multipath fading). The combined effect has
been shown to sometimes create isolated no-connectivity
areas scattered throughout an environment [1].

Temporal link quality predictions are mainly beneficial
for routing or protocol level algorithms such as channel
trade-off and handover, whereas spatial prediction of wireless
connection quality is useful in mobile ad-hoc networks and
connected vehicles, where wireless nodes keep changing
their positions. Thus, for autonomous robots, both spatial and
temporal prediction is important, and while there has been
a lot of research in temporal RSS prediction, relatively few
investigations deal with spatial prediction due to the nature
of multi-dimensional complexity.
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47906, USA. P. Ögren is with KTH Royal Institute of Technology, Stock-
holm, Sweden 10044. Corresponding author email: ramviyas@purdue.edu.

For assessing wireless connection quality, we use the
received signal strength (RSS) metric, which has been used
successfully in previous work [2], [3], [4], [5]. In our work,
we follow a data-driven approach to predict the RSS in terms
of mean and variance values corresponding to path loss and
shadow fading components, respectively. We use a localized
estimation of large-scale path loss fading element using the
recent measurements in the spirit of [2], where the region-
to-region wireless channel variations are modeled.

More precisely, we employ a localized linear regression
for the path loss component by applying differential path
loss between RSS measurements at several previously-visited
positions of the robot. This enables a fast prediction and gives
modest requirements on the data and computation needs.
The shadow fading, on the other hand, is modeled using
an empirical spatial variogram method. For this purpose, we
employ the exponential model used in [6]. We then use a
Discrete Kalman Filter (DKF) to fuse the models above, filter
the data, and provide spatial extrapolations of the RSS.

The main contributions of the paper are that we introduce
a new online method based on a DKF to quickly predict the
RSS in yet unexplored regions ahead of the robot and show
that the proposed framework performs better than the state-
of-the-art methods on the real-world experiment datasets [7]
collected in both indoor and outdoor environments.

II. RELATED WORK

Predicting the RSS has been well-studied in both the
temporal domain [5], [8], [4] and spatial domain [9], [10],
[11], [3]. Spatial RSS prediction algorithms typically involve
dedicated offline training phase for use with supervised
learning [9], dedicated fingerprinting methods [10] or geo-
statistics (Kriging interpolation) [11], [3], whereas most
fully online methods use linear regression [12] or Gaussian
process regression 1 (GPR) [13], [3], [11], [14]. Although
these frameworks produce excellent prediction performance
in short range (within few meters) extrapolations with their
primary focus being active motion control and path planning
or radio signal mapping and localization applications (e.g.,
[13], [3]), we are interested in RSS predictions in the long
range (tens of meters) to be of practical use in robots.

In [2], a low-complexity method for spatial RSS prediction
is proposed for region to region (localized) connectivity.

1The Kriging and the Gaussian process regression methods are closely
related in a sense that the former is used in the geostatistics literature and
commonly referred to as Ordinary Kriging whereas the latter is used in the
machine learning literature and can be considered as equivalent to Simple
Kriging in spatial statistics.



This work inspired our design of an adaptive localized log-
linear regression scheme to model the path loss component.
Additionally, we take inspirations from the probabilistic
approaches in [13], [15], [3] and propose an empirical
spatial covariance estimation method to model the small-
scale dynamics in the RSS (mainly shadow fading) as a first
order Markov-Gaussian process [3]. We depart from [13],
[15] by using an empirical variogram. This allows us to
create a non-parametric framework that will support dynamic
environmental conditions. We rely on practical assumptions
such as that the robot is able to localize itself (even a simple
dead reckoning system should suffice) and that the RSS
measurements are readily available

Kalman filters (KF) have been successfully used in filter-
ing and smoothing of RSS measurements in both temporal
[4] and spatial predictions [3]. In this paper, we will not only
use a KF based framework for filtering the RSS measure-
ments but also use it as an integration framework for the RSS
prediction models formulated as state-space representations.

Moreover, in contrast to the above mentioned related
works, which either estimate the source location or assume
the source location to be known, we do not assume that the
exact location of the radio signal source is known (i.e. no
knowledge on router position), adding to the merits of the
proposed approach. Besides, our framework provides a fast
online method for predicting spatial RSS samples in non-
visited robot positions using sparse samples of the visiting
positions. It provides forecasts of RSS values which can be
utilized to estimate spatiotemporal link disruptions.

III. BACKGROUND ON RADIO SIGNAL PROPAGATION

An RF signal propagating through a medium is subject to
several environmental factors that impact its characteristics.
In the absence of nearby obstacles, the signal strength will
be reduced by the free-space path loss (FSPL) caused by the
spreading out of the signal energy in space. A commonly
used model to represent variation in radio signal strength as
a function of distance and time is the Log-Normal Shadowing
Model (LNSM) (Eq. (1)).

RSS(d,t) = RSSd0 − 10η log10(
d

d0
)
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where d0 is a reference distance (usually 1m), RSSd0 is
the RSS at the reference distance, η is a environment-
dependent path loss parameter, and d = ∥ps − pr∥ is the
euclidean distance between the radio source position ps and
the receiver (robot) position pr. While the path loss fading
is deterministic, the shadowing (Ψ) and multipath fading (Ω)
are often modeled as stochastic processes with (zero-mean)
Gaussian or Nakagami distributions.

The LNSM model requires constant updates of the pa-
rameters as and when the environment changes and could
include the configuration of walls, floors, and obstacles on
the path of radio waves to precisely model the shadowing
effects [12]. In this work, we mitigate the multipath fading
component (Ω) in the RSS by locally (spatially) averaging
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Fig. 1: The proposed KF based RSS prediction method.

measurements. Moreover, we apply localized learning of the
radio channel instead of a global source specific model [3].

Note that there exist commercial software and simulation
tools to produce an RSS map in a known environment using
sampling techniques or theoretical models such as Friis trans-
mission, Ray-tracing, Rayleigh and Rician fading. However,
these tools are not applicable in unknown environments.

IV. PROPOSED RSS PREDICTION METHOD

The main focus of this work is to provide a solution for
online spatial RSS prediction that is reasonably accurate
yet computationally efficient. Assuming that the robot can
localize itself, we have the following measurement tuple:
{p, ν, z}. Here, p ∈ R2 is the robot’s position in a plane,
ν ∈ R2 is the instantaneous velocity, and z ∈ R is the
RSS measured at p. Given this measurement tuple, we will
estimate a state xk, which is decomposed of path loss zplk
and shadowing zshk components,

xk = [z
pl
k

zshk
] . (2)

The structure of the proposed method is illustrated in Fig. 1,
where each block is explained in the consecutive subsections.

A. Multipath fading mitigation

Multipath fading possess spatial correlation only over short
distances (usually within a wavelength λ of the radio signal
used) [1]. Therefore, we seek to mitigate the multipath fading
effects on the measured RSS by applying a spatial moving
average filter (MAF) with a window size LMAF = 10λfs

ν
,

which is adapted online based on the robot’s velocity (ν)
and the RSS sampling frequency (fs) such that the sampled
distance during that window is around 10λ (see [8]). The
minimum value of LMAF is empirically set to 5 samples
so that the filter also removes much of the noise in the
measurement. This minimum value is used also when the
robot is not moving (ν = 0).

B. Path loss component

The attenuation in the RSS due to path loss (PL) can be
modeled using a (adaptive) floating-intercept model

zpl = α log10(d) + Γ . (3)

Here, d = ∥p−p0∥ is the distance between the robot’s current
position p and a reference position p0. Comparing Eq. (1)
and (3), we see that α = −10η and Γ = RSSd0 .



A drawback with this model fitting is that it cannot be
directly treated as a state-space representation, and hence
does not integrate well into a state prediction framework such
as a Kalman filter. Therefore, we propose a new differential
path loss model in Eq. (4) which holds all the properties
of Eq. (3) yet can be characterized with state transitions as
shown in Eq. (4), at an arbitrary instant k.

z − z0 = α log10(
d

d0
) + β ,

zplk = zplk−1 + α(log10(dk) − log10(dk−1)) + β .
(4)

Here, d0 is the distance between the initial position of the
robot and the source. z0 is the RSS at initial position po. α
remains the same as in Eq. (3), and β represents the noise in
the PL model. We do not assume to know the exact source
location. Instead, we assume that when the robot starts its
journey, it is within a few meters from the source location
(i.e., d0 ≈ 1m), which is more practical because in connected
cars, the GPS positions of vehicles are typically broadcasted
first and localization errors in real-world sensors can be
accounted into the model. Because we assume erroneous
position measurements, a total least squares (TLS) solution
would better fit the model to the sampled data compared with
an ordinary least squares (OLS) solution.

We use a reference position pr that decides the initiation
of the algorithm (s.t. dr >> d0 and zk > zr) and the
number of training samples (N ) for the algorithm as: N =
size(pr, pr+1, ...., pk) with pk being the robot position at
the kth instant. dk is the distance between the robot at
its current instant pk and its initial position p0. We use a
training size adaptation similar to the one in [8] to reduce
the prediction error, especially around abrupt changes in
wireless channel parameters such as a change of environment
from the line of sight (LOS) to non-line of sight (NLOS).
Note, the proposed PL prediction model is similar to the
ones used in [2], [16], except for three notable differences:
(1) a differential PL is used instead of an absolute PL to
address state-space transitions; (2) the PL model is fitted
with a TLS solution instead of an OLS solution to improve
fitting accuracy; (3) exact source position is not required by
the model. These differences make our model adaptable to
dynamic environments and widen the range of applications.

C. Shadow fading component

We use a partial geostatistic approach for modeling the
shadowing element (zsh) in the RSS. Given that the shad-
owing effect is a wide sense stationary (WSS) process [6], we
adopt a variogram model to learn the shadowing covariance
function. The variogram measures the spatial dependence
(dissimilarity) of the zsh. An empirical semi-variogram with
a spatial lag λ shown in Eq. (5) is used to assimilate the
measurements into the model.

γ̃(λ) = 1

2N

N

∑
k=1

[z̃shk+λ − z̃shk ]2
. (5)

In theory, many valid analytical variogram models (such
as exponential, spherical, Gaussian, etc.) exist but especially,

the exponential variogram model in Eq. (6) has been found
to be suitable with the geographical radio signal strength
map [3], [6] and is computationally less expensive in fitting.
Therefore, we have

γ(λ) = cυ + cm[1 − e(−
∥λ∥
τ )] , (6)

where, cυ represents nugget (offset), cm represents still
(variance), and τ is the range (characteristic length-scale)
of the variogram. The distances are converted to lags (λ)
when creating the variogram. We deviate from the traditional
approach of using the variogram model in the Kriging
process [3], [11], and instead, use a covariance function
(similarity measure) as it is easier to integrate into a KF
framework. Let us express k(p, p′) = cov(zsh(p), zsh(p′))
as the covariance of shadowing components between the
measurements at positions p and p′. The relation between the
variogram model and the covariance function is as follows:

γ(λ) ≅K(0) −K(λ); (7)

By substituting Eq. (6) in Eq. (7), we obtain an exponential
covariance function (Laplacian kernel) in Eq. (8) that is less
sensitive to the correlation parameter (τ ), which tends to vary
greatly in dynamic environments.

K(λ) = k(p, p′) = cm exp (−∥p − p
′∥

τ
). (8)

Here, cm is the shadowing variance. Following [17],
a state-space representation for the shadowing process is
obtained in Eq. (9) with the shadowing prediction variance
in Eq. (10).

zshk+1 = zshk exp (− ∥p−p
′
∥

τ
) + σsh, (9)

σsh = cm (1 − exp (− 2∥p−p′∥

τ
)) . (10)

D. DKF Framework

The objective is a data-driven non-parametric approach
that is adaptive in real time. DKFs are known to be fast,
efficient and useful for reliable online estimation and predic-
tion [4], [3]. We combine the zplk and zshk models described
above in a state-space model that can be subject to a DKF
design with the following system dynamics:

xk = Akxk−1 +Bkuk +Gωk−1; (11)
zk =Hxk + εk; (12)

where, xk is the state, uk is the control input, zk is the
measurement, ω is the process noise ∼ N (0,Q) with process
noise covariance Q, ε is the measurement noise vector ∼
N (0,R) with measurement noise covariance R. The matrices
A, B, G and H represent state, control, process noise, and
observation transformation, respectively.

xk = [z
pl
k

zshk
] , uk = [ log10(dk)

log10(dk−1)
] , zk = [zk] ; (13)

A = [
1 0

0 e(−
∆s
τ )

] ,B = [α −α
0 0

] ,G = [0
1
] ,H = [1 1] . (14)



The spatial sampling interval is the distance between two
successive samples: ∆s = dk − dk−1. The PL parameters α
and β are obtained by applying TLS (Deming) regression.

The shadowing components of the training samples are
observed as the residuals of the PL components (based on
the fitted PL model omitting β) from the true values. The
residuals are then processed to create an empirical variogram
using Eq. (6). The analytical variogram parameters cm, cυ ,
and τ are learned from the data by equating Eq. (5) and
(6) with a weighted least squares (WLS) fitting. The nugget
(offset in variogram) cυ is treated as the measurement noise
variance. The process and measurement noise covariances R
and Q are dynamically updated as follows:

Rk = cυ; Qk = [
cov(β) 0

0 cm(1 − exp −∥2∆s∥

τ
)] . (15)

Note the shadowing process is implicitly detrended from
the path loss fading (zshk = ẑk−zplk ), as advised in [11], so that
the applied variogram model complies with the geostatistical
principles. This implies that the proposed framework follows
a hybrid geostatistic-KF approach. The recursive nature of
the DKF and data sub-sampling are exploited to reduce the
computational load in processing measured data.

E. Prediction

Assume that the RSS is sampled at a constant frequency
(fs). The RSS spatial interval is directly proportional to the
robot’s velocity, ∆s = ν

fs
. At any instant k, the prediction will

be done for the (k + P )th instant, where P is the number
of samples ahead. Translating this to the spatial domain,
for a prediction distance of M meters ahead of robot’s
current position pk, P is calculated as follows: P = M

∆s
. The

following equations provides prediction mean and variances.

ẑµk+P = [
1 0

0 e(
−P
τ )

]xk + [αk −αk
0 0

] [log10(dk +M)
log10(dk)

]

ẑσ
2

k+P = cov(β) + cm(1 − exp
−∥2P∆s∥

τ
)

(16)

V. EXPERIMENTAL EVALUATION

We implemented the proposed RSS prediction method in
MATLAB and tested it on two publicly available real-world
measurements datasets [7], [18] whose hardware configura-
tions and parameters are listed in Table I. In both datasets,
there were instances of LOS from/to NLOS transitions (e.g.,
outdoor: ≈ 90th sample, indoor: ≈ 800th, 1200th, and 1500th

samples). Note the RSS is sampled at a frequency of 10 Hz.
To compare our approach with the state-of-the-art meth-

ods in spatial RSS prediction, we implemented (i) Kriging
interpolation2 (KI) following [3] (except that the temporal
filtering is done using the MAF instead of a KF), (ii) Gaus-
sian Process Regression3 (GPR) following [19] (assuming

2Using the Ordinary Kriging toolbox for Matlab provided by Wolfgang
Schwanghart. http://www.mathworks.com/matlabcentral/
fileexchange/29025-ordinary-kriging

3Using Gaussian Processes for Machine Learning (GPML) Matlab li-
brary. http://gaussianprocess.org/gpml/code.

an unknown source location), and (3) Linear regression (LR)
following [12] (without the influence of obstacles/walls).

As measures of the prediction performance, we used an
evaluation metric, Mean Absolute Error (MAE) (AEµ =
∣ẑµk+P − zk+P ∣), which considers only the prediction mean
so as to provide a fair comparison with all the state-of-the-
art methods including LR. Here, zk+p is the true measured
value and ẑµk+p is the predicted mean value. Using the MAE,
we estimate the Mean Prediction Accuracy (MPA = 100
(1 −∑ ∣ẑ

µ
k+P

−zk+P ∣

∣zk+P ∣
)), which normalizes the prediction error

with respect to the true RSS values.

VI. RESULTS

Fig. 2 and Table II offers summarized results of all the
investigated methods in both the environments. The values
MAE and MPA are averaged over prediction distances of
1 to 10m in indoor and 1 to 20m in the outdoor datasets.
The proposed KF based method reached more than 96%
accuracy in the outdoor experiments, whereas it reached
around 84% accuracy in the indoor experiment, which had
a more complex robot trajectory. Note that the KF accuracy
was always greater than 95% for short distances (up to 5m).
In all cases, our method performed significantly better than
the other methods. Also, it can be seen from Fig. 2 that
the proposed method handled the predictions well even after
LOS/NLOS transitions, however with some deviations at
those transitions (e.g., ≈800 samples in indoor environment).

It appears that the predictions in the indoor environment
were more challenging partly because of the experiment
setup in which the robot was moving more irregularly com-
pared to the linear (unidirectional) robot movements in the
outdoor environment. Moreover, several settings including
odometry errors (localization system) could have impacted
the prediction results. Also, the impact of mltipath compo-
nent, source location errors, and estimation over even longer
distances (> 20m) will be investigation in our future work.

VII. CONCLUSIONS

In this paper, we presented an online method for predicting
RSS over long distances (over tens of meters) in unknown
environments. We exploited the integration of a localized
differential path loss model and an exponential variogram
approach into a DKF to predict mean and variance of RSS
in unvisited positions of the mobile robots and connected
vehicles. All parameters in the model are automatically
adapted to the measured data, to realize a fully data-driven
non-parametric approach with limited model priors on the
wireless channel, which is a physical process.

The proposed method was evaluated using real-world ex-
perimental data in indoor and outdoor scenarios. The method
was able to attain a mean absolute prediction error (MAE)
of less than 4 dBm for predicting the RSS up to 20m in
advance in outdoor data, whereas in the indoor dataset, the
MAE was less than 7 dBm. In all cases, the results of our
approach outperformed the state-of-the-art methods such as
the Gaussian process regression, linear regression methods,
and the Kriging interpolation algorithms.

http://www.mathworks.com/matlabcentral/fileexchange/29025-ordinary-kriging
http://www.mathworks.com/matlabcentral/fileexchange/29025-ordinary-kriging
http://gaussianprocess.org/gpml/code


Robot Radio source Radio receiver Tx antenna Rx antenna Tx position Area covered Average velocity Number of samples
(Tx) (Rx) (w.r.t. robot frame) m2 m/s

Outdoor Tracked UGV Bullet M2 Bullet M2 Omni Omni (-5,25) 2068 0.3 5839 (raw)
(2.4GHz WiFi AP) (Station) (16dBi) (16 dBi) (18m x 120m) 198 (subsampled)

Indoor [18] youBot Asus RT-10U TP-LINK WN722N Directional Omni/Dir (5,0) 108 0.2 1689
(2.4GHz WiFi AP) (Station) (8dBi) (8 dBi) (6mx18m)

TABLE I: Configurations and important parameters used in the measurement dataset [7].
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Fig. 2: Prediction performance results of the outdoor (top row) and indoor (botton row) experiment datasets. Sample plots
are presented for the KF based predictions along with comparison results of the prediction error and its distribution.

KF Kriging GPR LR
Outdoor (N=20) MAE (dBm) 2.59 7.52 5.08 5.88

MPA (%) 96.12 87.75 92.42 91.48
Indoor (N=200) MAE (dBm) 7.01 10.31 12.13 10.91

MPA (%) 83.70 75.39 72.97 76.48

TABLE II: Comparison of mean prediction accuracy.
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