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Abstract— Traditionally, research on mobile robot adaptabil-
ity to damaging external stimuli has only focused on making
individuals capable of surviving on their own, which is often
very expensive and lacks robustness. In this paper, we present
our initial work on an Emperor Penguin huddling-inspired
group survival methodology for a multi-robot system exposed
to a damaging directional external stimulus. Individuals on the
stimuli side are able to relocate to the safest location on the
leeward side of the group in turns without any communication
requirements or prior knowledge of the group size or shape,
for prolonged survival of the group as a whole. A distributed
boundary movement method is proposed with Gaussian Pro-
cesses machine learning that allows individuals to relocate to
the robot health-loss-rate global minima around the group
boundary only using stimuli measurements. Simulation results
validate our proposed methodology of successfully relocating
individuals. The robustness of the proposed method was tested
under different formation sizes and shapes. In all cases,
successful relocation was obtained. As an effect, significant
improvement in survivability of the robot group as a whole
was obtained.

I. INTRODUCTION

Robots play an important role in exploring the unknown
and in some of the harshest environments on Earth [1]. To
survive severe damaging environments (strong directional
winds, blizzards, dust storms, etc.), individual robots have
traditionally required custom-built hardware to survive long-
term exposure to extreme external stimuli. For instance,
robots built for Antarctic explorations (such as NOMAD
[2] and Cool [3]) encounter extreme cold temperatures and
strong damaging winds even in the Antarctic summer [4].
In such conditions, electronic components require specially
sealed, insulated, aerogel warm-housing [5] [6] for normal
operation; lithium batteries despite being a popular choice,
suffer severe power loss at temperatures below 0oC [7].
Warm-up routines are often required as well to keep lubri-
cants from stiffening. Such adaptations are expensive and in
most cases specific to individuals and environmental con-
ditions. Given the unpredictable nature of such conditions,
designing individual robots that can take into account all
possible scenarios is not feasible either.

Emperor Penguins in the Antarctic are able to survive one
of the harshest environments on Earth (temperatures below
−45oC, winds over 100mph [8]) by working as a group.
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Fig. 1: Penguin huddling in the Antarctic winter showing
boundary movements from the windward to the leeward side.
Image taken from the PBS Nature show.

During Antarctic storms, the penguins huddle together [9]
in tight groups. An observation described in [10] suggest
that under strong wind conditions, Emperor penguins on
the windward side slowly move down the flanks to the
leeward side and position themselves behind the huddle.
The penguins that are now exposed follow and position
themselves behind the ones who moved in previously; the
process continues so that everyone gets an equal opportunity
to stay protected by being downwind and eventually the
center; none are left behind. Fig. 1 shows penguin huddling
and boundary movement in the Antarctic winter.

While Emperor penguins have evolved to withstand very
low temperatures on their own, they can only survive con-
ditions as severe as Antarctic winters by being in a social
group. Individual robots have been traditionally designed
the same way, but we ask the question how being in a
group can increase robustness in survivability. Similar to how
penguins take turns being on the leeward side of the group
during storms, robots could take turns settling on the leeward
side to minimize damage by physical protection from the
group when no shelter is available nearby. In this paper,
we propose a distributed boundary movement methodology
using Gaussian Processes machine learning with a spectral
mixture kernel to relocate individuals from the stimuli side
to the health-loss-rate global minima on the leeward side
without requiring any communication or prior knowledge of
group size or shape when exposed to a damaging directional
external stimuli.

II. RELATED WORK

Body heat and the energy saving benefits of penguin
huddling and shuffling has been studied in [11]. The dynamic
movements in the huddle that allow an equal opportunity
for all penguins to be at the center based on temperature
changes within the huddle was explained in [9]. Despite



numerous extensive studies, very few theoretical models of
the boundary movement in a huddle has been put forward.

A theoretical model focused on the boundary movements
of huddling penguins moving from the windward side to the
leeward side was first proposed in [12]. Waters et al. [13]
extended that work by taking into account an inviscid and
irrotational wind flow and a temperature profile around the
huddle. The huddle was created as a hexagonal grid based
on [8] and assumed that the penguins did not displace one
another and the penguin with the highest heat loss relocated
to the centrally pre-computed best location in the huddle.

Previous work on robots following a boundary using
machine learning include a wall-following robot that used
linear regression and Support Vector Regression to predict
motor commands to determine the direction of motion [14].
Programmable self-assembly of multi-robots was achieved
by [15] using Kilobots [16] following the boundary of
the group to form complex planar prescribed shapes. A
centralized approach of robot relocation in a structured
robot formation was previously studied in [17] assuming full
communication and state information.

Adaptive behaviors by robots to external stimuli have
primarily focused on peripheral stages of sensory perception
or on peripheral motor control [18][19]. Conditioned reward-
based behavior to adapt to external stimuli using spiking
neural networks was proposed by [20].

For our multi-robot system with distributed control and
without communication, we build on the huddle modeling
work by Waters et al. [13]. Since the robots are unaware of
the size and shape of the huddle, nor have any information
on a suitable safe relocation position, this paper proposes
a machine learning approach where robots move along the
boundary looking for a favorable position to relocate to, only
relying on external stimuli readings and distance to neigh-
bors. Our proposed method combines learning algorithms in
artificial intelligence to multi-robot group survival decision
making in extreme environments in a distributed manner.

A. Robot group formation and movement dynamics

We consider a scenario where a robot group has been
deployed on a long-term mission without any human super-
vision and encounters a severe external stimuli without any
shelter nearby. The huddling behavior of Emperor penguins
involve tight packing of individuals for group survival.
Therefore, we consider a closed hexagonal lattice formation
for our group of robots with no empty spaces within the
robot group. We let rt

i ∈ R2 denote the position of the ith

robot Ri on a planar surface with respect to a global inertial
frame for i = {1,2..,N} at time instant t, with a neighbor
detection radius of rd . For simplicity, we model the robots
as point masses with full actuation. The dynamic model of
the ith robot can be written as, ṙi = vi, v̇i = ui; where vi and
ui denote the absolute velocity and the control force for the
corresponding robot i.

At any given time t, Ri can either be staying in formation
(i ∈ A) or moving along the boundary (i ∈ B) where A is
defined as the set of robots staying in formation and B

the set of robots moving around the boundary. We assume
every robot is equipped with distance sensors and are able
to classify neighboring robots within rd to be in A or B. We
model robots in A and B to only interact with robots in their
own set. This ensures that boundary moving robots do not
displace robots that are currently in formation.

The hexagonal lattice formation with robots in A is main-
tained using an interaction force fI derived from an artificial
potential FI previously established in [21] written as,

FI =

{
αI(ln(ri j)+

d0
ri j
) 0 < ri j < d1

αI(ln(rd1)+
d0
d1
) ri j ≥ d1

(1)

fI =

{
Ori j FI 0 < ri j < d1

0 ri j ≥ d1
(2)

where ri j is the distance between robots i and j in A, αI
is a scalar control gain; d0 and d1 are scalar constants such
that d0 < d1 ≤ rd . At equilibrium, all robots are grouped
together in the hexagonal lattice formation. The hexagonal
lattice formation is locally stable in the sense of Lyapunov
because by design, the equilibrium is a global minimum of
the total artificial potential [21]. Robots in B also interact
with other members of B exclusively using Eq. (1)-(2) to
prevent collision.

We define an artificial potential Fd and the attractive force
fd for the tangential boundary movement of robot Ri, i ∈ B
around its closest neighbor R j, j ∈ A by,

Fd =
1
2

αdr2
i j fd = OFd (3)

where αd is a scalar gain constant, ri j ≤ rd is the distance
between Ri and R j. We denote ft as the tangential force
vector derived with magnitude equal to || fd || and direction
θt = θd +η

π

2 , where θd denotes the direction of fd and η ∈
{1,−1} depending on the direction of movement. Therefore,
the control input can be written as,

ui =

{
−∑

N
j 6=i, j 6=m fI(ri j) i, j ∈ A,m ∈ B

− ft(ri j) i ∈ B, j ∈ A.
(4)

We constraint each robot with a maximum velocity vm.

III. PROPOSED SOLUTION

A. Modeling Damaging Directional External Stimuli and
Robot Health Loss

For a multi-robot group on a planar surface modeled as a
hexagonal lattice formation, we assume a damaging external
stimuli from the left, detrimental to the set of exposed robots.
The setup is illustrated in Fig. 2a. To maintain generality of
a damaging directional external stimuli, we set the following
requirements:
• A direct damaging force on the stimuli side.
• Stimuli affects flank members exposed to the outside.
• Direct protection is only available on the leeward side.

We model such a damaging external stimuli as a direc-
tional, viscous and incompressible fluid flow with an inlet
on the x = −10 line, flow directed towards x+ with inlet



(a) A hexagonal lattice formation of N=26
robots. A damaging directional external
stimuli is present along the x+ direction.
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(b) Pressure/Density (units4/t2) distribution
from modeling the damaging directional ex-
ternal stimuli as a fluid flow.
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(c) x-velocity (units/t) distribution from
modeling the damaging directional exter-
nal stimuli as a fluid flow.

Fig. 2: Damaging directional external stimuli as a viscous incompressible flow around the robot formation.

velocity, vx = v f around our robot group. Fig. 2b-2c show
the pressure/density distribution and vx distribution of the
fluid around the robot group respectively. We assume high
pressure/density zones and high vx zones as damaging
elements to an exposed robot in the group. The modeled fluid
flow fulfills our set requirements for a damaging directional
external stimuli as follows:
• Creates a high pressure zone on the stimuli side (anal-

ogous to a direct damaging force).
• Flanks experience high fluid velocity with variations in

pressure (damaging for exposed flank robots).
• A low absolute pressure zone with low fluid velocity on

the leeward side (protected zone).
The illustrated fluid flow was simulated in the MATLAB

QuickerSim toolbox with viscous coefficient ν = 10. We as-
sume that robots have negligible spacing in between such that
the robot group may be considered a solid non-deformable
planar object. Thus, the fluid flow model may be simplified
as a flow around a single solid object.

At time t, Ri measures the external stimuli at its location
ri to determine its rate of health loss written as,

Lt
i =

{
βP|Pt

i |+βV V t
i

nt
i

if nt
i < 6

0 else
(5)

where βP and βV are scaling constants, Pt
i and V t

i are
measured pressure and fluid velocity and nt

i is the number
of neighbors detected within rd .

Ri, i ∈ A breaks off the formation if Lt
i > Lthreshold , such

that Ri for A← A\{i}, B← B∪{i} starts moving along the
boundary with η determined as away from the direction of
the damaging external stimuli.

B. Boundary Movement using Gaussian Processes estimated
Global minima

Once movement is initialized for Ri, i ∈ B the time
is recorded as t i. Ri, i ∈ B continues to move along the
boundary unaware of the size and shape of the robot group,
without moving backwards or displacing neighboring robots,
measuring fluid pressure Pt

i , fluid velocity V t
i at coordinates

rt
i = (xt

i ,y
t
i) at every time instant t ≥ t i. Without any commu-

nication it is unable to determine its safest relocation position
from the group where absolute pressure and fluid velocity are

lowest suggesting a minimal Li position from the external
stimuli. We denote the current time as tc.

Gaussian Processes (GP) are a powerful regression tech-
nique which provide Bayesian non-parametric smoothing
and interpolation with a set of basis functions. We define
a distribution over functions f (x),

f (x)∼ G P(m(x),k(x,x′))

m(x) = E[ f (x)]
k(x,x′) = cov( f (x), f (x′))

(6)

where x ∈ RS is an arbitrary input variable over space S,
m(x) is the mean and k(x,x′) is the covariance function
respectively.

The properties of the likely functions under a GP are
controlled by the positive definite covariance function. The
choice of the kernel affects performance significantly on a
given task. A commonly used kernel function is the squared
exponential (SE) kernel (7) where the only covariance struc-
ture learned from training data is the length scale l,

kSE(x,x′) = exp(−0.5||x− x′||2/l2). (7)

However, by using a mixture of Gaussians that have non-
zero means, a much wider range of spectral densities can be
obtained [22]. Therefore, for better performance we use the
spectral mixture (SM) kernel,

kSM(τ) =
Q

∑
q=1

wq

S

∏
s=1

exp{−2π
2
τ

2
s v(s)q }cos2πτsµ

(s)
q (8)

where wq are weights that specify the relative contri-
bution of each mixture component, Q is the number
of Gaussians on RS with the qth component having
mean µq = (µq(1), ...,µq(S)) and covariance matrix Mq =
diag(vq(1), ...,vq(S)) and τs is the sth component of the S
dimensional vector τ = (x− x′).

The advantage of GP over other learning approaches is
that it provides well defined confidence intervals important
to assess the predicted model. Therefore, we propose GP
machine learning at time intervals of tint for Ri, i ∈ B to
determine pressure and velocity models f P

i (t) and f V
i (t) as

trends in Pt
i and V t

i measurements collected as training data
between t i ≤ t ≤ tc respectively, and extrapolate the models
to predict if a better relocation position is available ahead up



TABLE I: Simulation parameters
Simulation scenario Conditions for robot relocation

S1 GP estimated global minima
S2 Local minima with Ltc

i < Lti
i

S3 (control) Robots do not relocate

TABLE II: Simulation parameters
Parameter Value Parameter Value

d0
√

3 units βP/βV 2.05
d1 d0

√
3 units αI 4

λ1/λ2 2.05 αd 8
ttol 2ts vm 0.25 units/ts
tint 5ts for (tc− t i)> 30ts rd d1

Lthreshold 0.01

to time textrap. We define a cost function Lc
i (t) using weighted

f P
i (t) and f V

i (t) components and determine a global minima
corresponding to the safest location in the group at t = tmin.
The cost function Lc

i is defined as,

Lc
i (t) = λ1| f P

i (t)|+λ2 f V
i (t) (9)

tmin = argmin
t

Lc
i (10)

where λ1 and λ2 are weights of each component. The global
minima is determined by a simple exhaustive search.

After every GP iteration at time interval tint , the deter-
mined tmin is compared to tc to asses if Ri, i∈ B should settle
or continue to move. If tc− ttol ≤ tmin ≤ tc + ttol , where ttol
is a defined tolerance constant, implying that tmin has been
found within a certain tolerance of the current iteration time
tc, then the best location is in the immediate vicinity of rtc

i
and Ri settles at the current location B←B\{i}, A←A∪{i}.
If not, Ri, i∈ B continues to move along the boundary in the
same direction for tmin > tc + ttol . We ensure tmin ≥ tc− ttol
is always true such that Ri, i ∈ B does not have to move
backwards by setting a small enough tint . With more training
data after every iteration, the predicted models improve over
time providing better estimations of the global minima.

IV. VALIDATION

A. Simulation Setup

To validate our proposed method, we show that Ri, i ∈
{1,2..,N} on the exposed side of the group is successfully
able to move from the stimuli-side to the leeward side
health-loss-rate global minima of the group, using external
stimuli measurements only, without any communication re-
quirements or prior knowledge of the group size or shape.
The validation process is set up with three scenarios to

establish the need and effectiveness of our proposed GP
global estimation method for distributed robot relocation as
presented in Table I. We compare S1 and S2 to show the
importance of using a relocation by health-loss-rate global
minima approach in comparison to local minima; the use
of a learning algorithm is also justified. We compare S1
with S3 to show the extent of improved survivability of
individual robots and the group as a whole with the proposed
method, in comparison to a control group where robots do
not relocate or seek safety. We consider a group of N = 26

robots in a closed hexagonal lattice formation on a plane
as previously shown in Fig. 2a. The group is exposed to a
damaging directional external stimuli modeled as a viscous
incompressible fluid flow from the left with v f = 1 units/t
and ν = 10 as shown in Fig. 2b - 2c. We assume the
following:
• Robots do not communicate with each other.
• Robots do not displace each other.
• Robots can measure distance to neighbors with in rd .
• Robots can measure external stimuli.
• All robots are identical in shape and size.
For demonstration purposes, we track and present the

progress of five randomly picked robots from the stimuli side
at t0 denoted as Ri, i ∈G26 where G26 = {12,15,23,24,25}.
For all scenarios, we initialize the simulation at time t0 with
sampling time ∂ t = 0.1 and time step unit written as (ts). At
t0, ∀Ri, i ∈ A. At every time instant t, Ri determines its Lt

i
using (5). For comparison between the scenarios, we denote
the final health-loss-rate for Ri, i ∈ G26 when settling under
S1 as (Lt

i)S1 and S2 as (Lt
i)S2. The simulation parameters

used are exaggerated for brevity and are listed in Table II.
rd is chosen to be the minimum distance to possible imme-
diate neighbors to show the effectiveness of the proposed
algorithm even with limited sensing. The proposed concept
of relocating individuals to the leeward side is a continuous
process in the group; for presentation and analysis purposes
the simulation is stopped at t = 50.

B. Relocation using S1 vs. S2

1) S1: Fig. 3 shows the progress of the boundary move-
ment of Ri, i∈G26 along with the fluid pressure and velocity
distribution around the robot group with changing boundary
at specific time intervals. Fig. 4 tracks the corresponding Lt

i
for robots Ri, i ∈ G26 following their boundary movements.

At t0, R15, R23, R24 and R25 are directly exposed to the
external stimuli and start to move along the boundary as
shown at time t = 0.2. At t = 0.6, R12 becomes exposed
as R15 and R25 moved away; therefore, R12 starts to move
along the boundary as well, as shown at time t = 4.1. R24
was successfully able to determine its global minima on the
leeward side at t = 13.1, followed by R23 at t = 14.7. R25
reached a minima close to zero at t = 13.2 but continued
to move based on its estimation of a global minima being
further ahead. R25 finally settled at t = 29.7. R15 and R12
settled around the same time at t = 29.5 and t = 29.6.

Lt
24 reached zero after t > 12 as it was surrounded on all

sides by neighbors; Lt
12, Lt

15, Lt
23 and Lt

25 get very close to
zero since the corresponding robots stay on the boundary
of the robot group even at t = 41.4. Lt

avg plots the average
health loss rate of the five tracked robots in Fig 4.

While moving around the flanks and extrema of the group
boundary, all robots experienced a sudden increase in Lt

i . In
this region, vx is at its peak along with very low pressure.
Since Lt

i considers the absolute value of the pressure compo-
nent, the robots experienced the highest health loss rate here
modeled by (5) as opposed to the stimuli-side where vx is
low with very high pressure. Regardless, Gaussian Processes



Fig. 3: Simulation time-lapse for N = 26 in S1, showing the
progress of five randomly picked robots (R12, R15, R23, R24,
and R25,) in G26 exposed to a damaging directional stimuli
along the x+ direction. The robots successfully move along
the boundary from the damaging stimuli side to the leeward
side of the group and settle at the health-loss-rate global
minima determined by the proposed GP estimated global
minima methodology.
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Fig. 4: Lt
i for i∈G26 in S1 decreases with time as the robots

move from the damaging stimuli side to the leeward side us-
ing the proposed GP estimated global minima methodology.

estimation was able to cope with such extreme fluctuations
to determine the overall trend in the measurements; the
global minima in terms of health loss rate was determined
to be further ahead for each robot. No communication was
necessary at any time between the robots for relocation.

The relocation process continued for other robots as well
and over time as more and more robots successfully relo-
cated to the leeward side, an aerodynamic group boundary
was obtained as shown at t = 41.4. The protruding flanks
of the initial robot group boundary gave away creating a
streamlined shape and the initial high pressure zone on the
stimuli side shrank considerably over time.

2) S2: The simulation was repeated with the same robot
group setup of N = 26 and damaging external stimuli model
with robots measuring Pt

i and V t
i at every time instant and

relocating to Lt
i local minima. As Ri moved with time, the

change in the calculated Lt
i was checked continuously for a

local minima. Upon determining the local minima at time
tmin, if tc− ttol ≤ tmin ≤ tc + ttol , Ri settled at tc if Ltc

i < Lt
i .

The simulation progression of S2 at time instants t = 22.8
and t = 44.4 is shown in Fig. 5 and the corresponding Lt

i , i∈
G26 is plotted in Fig. 6. Comparing the progress of S2 with
S1 at t = 22.8 and t = 41.4 in Fig. 5 and Fig. 3 respectively,
we make the following observations:
• R12, R15, R24 and R25 settled at boundary extrema in

the local minima case with final (Lt
i)S2 > (Lt

i)S1 at the
end of t = 41.4.

• R23 was unable to follow the same path as before
because of frequently changing group boundary in the
local minima case and was still moving after t = 41.4.

In the local minima case, individual robots moved short
distances to a local minima and settled for short periods
of time before moving again. With this method of moving,
individuals are constantly moving and settling and may
eventually reach a rate of health loss global minima at a
certain time and position around the fast changing boundary,
but it is not guaranteed. The local minima method was
chaotic in comparison and did not allow individuals an equal
opportunity to reach the best available position around the
group boundary for survival. The global minima methodol-
ogy also created an aerodynamic group boundary over time
as opposed to the local minima methodology where the flanks



Fig. 5: Simulation time instances for N = 26 in S2, showing
the progress of five randomly picked robots in G26 exposed
to a damaging directional stimuli along the x+ direction. The
robots settle along the group flank boundary using the local
minima methodology.

expanded as seen at time t = 41.4 in Fig 5. Such observations
prove that the proposed Gaussian Processes estimated health-
loss-rate global minima method is essential for group survival
of individuals in the long run.

C. Scalability of proposed method

To verify that the conclusions from S1 hold true over a
range of N, the simulation was repeated for N = 35, 70
and 107 with arbitrary formation shapes against the same
modeled fluid flow as external stimuli. For each N case,
five randomly picked robots Ri on the stimuli side of the
group were tracked; i ∈ G35 for N = 35, i ∈ G70 for N = 70
and i ∈ G107 for N = 107 where G35 = {11,14,25,26,27},
G70 = {52,53,58,61,69} and G107 = {21,32,74,97,103},
respectively. Their health loss rate Lt

i with time correspond-
ing to movement around the boundary is shown in Fig. 7a-7c.
The simulations were allowed to run up to t = 50.

In each case, all tracked robots were able to successfully
move from the stimuli side to the estimated best location on
the leeward side. For N = 35 and N = 70, all tracked robots
were able to move at t = t0. For N = 107, R21 regardless of
having Lt

21 > Lthreshold at t = t0 was unable to move without
displacing a neighbor. The sudden increase in Lt

21 between
9 < t < 12 is as a result of its neighbors moving away for
relocation leaving R21 with a higher Lt

21 and able to move.
We denote the average time required for convergence of Lt

avg
to the health-loss-rate global minima as tavg

min . tavg
min for N = 26

is significantly smaller than tavg
min for N = 107 because of the

large difference in group size. However, tavg
min for N = 70 is

greater than tavg
min for N = 107. This is because the initial

shape of the N = 70 robot group had larger protruding flanks
than N = 107. As a result, robots on the stimuli side for
N = 70 had to travel longer distances in comparison to reach
the health loss global minima on the leeward side. This
observation suggested that tavg

min for different N cases has a
strong correlation with the size and shape of the robot group.
Regardless, the scalability of the proposed GP estimated
global-minima method in this paper was established without
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Fig. 6: Lt
i for i ∈ G26 in S2 decreases with time for some

individuals as the robots move along the boundary to relocate
using the local minima methodology.

any effects on the outcome due to group size or shape.

D. Effectiveness of the proposed method: S1 vs. S3

The effectiveness of the proposed method is established
by comparing the average robot health of the five randomly
picked robots in the same robot groups in S1 with control
scenario S3, when encountering the same modeled damaging
directional external stimuli. For all the simulation cases of
N = 26, 35, 70 and 107 in both scenarios, each of the five
tracked robots started with full health. We denote the robot
health at every time step when allowed to move as Ht

i and
when not allowed to move as nHt

i . At every time step for
both cases, Ht

i and nHt
i deteriorates by the corresponding Lt

i
for each robot. The average robot health for the five tracked
robots for each N case in S1 and S3 are denoted as Ht

avgN
and

nHt
avgN

respectively. All simulations for both scenarios were
allowed to run up to t = 50. The results of the comparison
are shown in Fig. 8.

In S3, nHt
avgN

for all cases of N deteriorated linearly
with time depending on individual Lt

i measurements. For S1,
Ht

avgN
leveled out over time with 18.42%, 16.67%, 35.83%

and 29.41% more health at t = 50, for N = 26, 35, 70 and
107 respectively.

As more robots relocate behind the initially moved robots
in S1 in a continuous process, every robot in the group gets
an opportunity to reduce their rate of health loss by relocating
to the safest available position behind the group. As a result,
the whole group is able to survive together for a longer period
of time in the field.

A video of the simulations is available for reference at
https://youtu.be/aEujdGRx2HY.

V. CONCLUSIONS & FUTURE WORK

In this paper, an Emperor Penguin huddling-inspired
multi-robot group survival methodology of surviving a direc-
tional damaging external stimuli is proposed. A distributed
boundary movement control method is presented that allow
robots to move from the stimuli-side to the safest available
position on the leeward side without requiring any com-
munication with each other or prior knowledge of group
size or shape. Gaussian Processes machine learning with
SM kernel is used to determine the best relocating position
for the moving robot based on only stimuli measurements.

https://youtu.be/aEujdGRx2HY
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Fig. 7: Lt
i for the tracked robots in each of the N = 35, N = 70 and N = 107 cases for S1 decreases with time as the robots

move from the damaging stimuli side to the leeward side using the proposed GP estimated global minima method.
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Fig. 8: The average robot health of tracked robots in all N
cases was consistently better for S1 (proposed GP estimated
global minima method) than control scenario S3 over time.

With successful preliminary simulation results, further work
studying the effects of changing external stimuli on the robot
group, distributed formation change to minimize stimuli
damage and experimental validation is ongoing.
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