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Abstract

This paper addresses the fundamental problem of finding an optimal location and allocation of relay robots to establish an immediate
end-to-end wireless communication in an inaccessible or dangerous area. We first formulate an end-to-end communication problem
in a general optimization form with constraints for the operation of robots and antenna performance. Specifically, the constraints on
the propagation of radio signals and infeasible locations of robots within physical obstacles are considered in case of a dense space.
In order to solve the formulated problem, we present two optimization techniques such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO). Finally, the feasibility and effectiveness of the proposed methods are demonstrated by conducting
several simulations, proof-of-concept study, and field experiments. We expect that our novel approach can be applied in a variety
of rescue, disaster, and emergency scenarios where quick and long-distance communications are needed.
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1. Introduction

In a disaster area, where previously established networks are
destroyed, one of the top priorities of search-and-rescue mis-
sions is regaining or rebuilding a communication link between
the base and rescuers as quick as possible in order to secure
the safety of both rescuers and survivors [1]. A group of au-
tonomous relay robots carrying wireless communication de-
vices can be deployed to rapidly build the wireless connection
between two end nodes, and thus enabling end-to-end commu-
nication1 [2]. This would effectively give firefighters, rescuers,
and first responders the ability to communicate with command
center and search the best evacuation route as shown in Fig-
ure 1 [3]. Since an immediate and optimal deployment of relay
robots plays a pivotal role in such an event, we tackle these de-
ployment problems in this paper.

Given two endpoints and basic map information such as the
physical location of buildings on a plane, multi robots carrying
wireless devices can be deployed to relay a communication sig-
nal between two points in a cascaded communication chain. We
assume that robots are initially located around one of the points,
e.g., a command center, and an initial communication between
the end points does not exist. With a rapid establishment of a

∗Corresponding author
Email addresses: minb@purdue.edu (Byung-Cheol Min),

kim1681@purdue.edu (Yongho Kim), lee1424@purdue.edu (Sangjun
Lee), jwjung@dongguk.edu (Jin-Woo Jung), ematson@purdue.edu (Eric
T. Matson)

1Throughout this paper, the term “end-to-end network” or “end-to-end
communication” refers to the communications link between two end nodes,
e.g., a command center and an end (lead or exploring) node.

Figure 1: A firefighter linked to command center through a set of relay robots.

wireless backbone is our primary goal as a robot deployment
planner, the research aim is: How do we find optimal locations
and allocations of the robots to construct the end-to-end com-
munication promptly and efficiently?

For effective deployment of relay robots, we divide the
deployment problem into two fundamental sub problems -
Location and Allocation, which needs to be solved simultane-
ously. The Location problem consists of finding optimal loca-
tions, where networked robots need to be located to relay ra-
dio signal between two end nodes in the quickest time. The
Allocation problem consists of finding which robots need to be
assigned to each location.
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The problem of building communication bridge on a plane is
classified as NP-hard problem [4]. The Location problem is ap-
proachable with continuous variables and the Allocation prob-
lem is approachable with discrete variables. Thus, an optimiza-
tion problem can be formulated as a combinatorial problem. In
this research, Genetic Algorithm (GA) and Particle Swarm Op-
timization (PSO) are employed to solve the optimization prob-
lem with evolutionary heuristic methods.

The primary contribution of this study is introducing a sim-
ple and effective way of applying evolutionary algorithms to
robotic sensor deployment problems. Since we consider most
constraints of end-to-end communication problem that can be
observed in the real world, solutions found by the proposed al-
gorithms are highly feasible and robust. In addition, as the pro-
posed algorithms are evolution based, they are easy to add or
remove robots (i.e., it is scalable), which is very important in
that they can be applied to a wide range of environments. We
expect that this research will play a significant role in creating
a rapid and advantageous communication bridge for complex
environments and will stimulate an active and vibrant research
field where robotic sensor network related problems could be
approached with or solved by evolutionary algorithms.

The remainder of this paper is organized as follows. First,
in Section 2, we describe related works; the end-to-end com-
munication, Location and Allocation problems, and our previ-
ous research. In Section 3, we address the basic concept of
an end-to-end wireless network and formulate the fundamental
problem to be solved. Also, we present additional constraints
to deal with the establishment of the network in more complex
environments. Then, we present two applied optimization al-
gorithms in Section 4. Simulation results and proof-of-concept
study in Section 5, and field experiments in Section 6 are shown
to verify the performance of the proposed algorithm. Lastly,
conclusions and future works will be summarized in Section 7.

2. Related Works

2.1. End-to-end Communication
Due to the high mobility and flexibility of operating mobile

robots, those such as aerial vehicles and mobile robots have
been widely used to establish or maintain ad hoc networks in
field of robotics [5]. For example, a mobile unit can be used to
form a desired shape of network if a wireless device is mounted
on the mobile unit. Then, the mobile unit turns out to be a relay
or router. Task of building end-to-end communication can be
divided into two categories depend on types of node; dynamic
end node and static end node.

First, building end-to-end communication for dynamic end
nodes can be achieved by deploying a team of leader-follower
robots in a convoying arrangement [6, 7, 8, 9, 10]. In this way,
multiple robots can be used, and only the leader requires navi-
gation capabilities to create the network while followers do not
require any planning. Alternatively, they need to follow the
leader or the precedent robot. Therefore, this approach is more
suitable for dynamic environments where situation can be fre-
quently changed because it is performed based on reactive ap-
proaches rather than pre-planning.

Second, building an end-to-end communication for static end
nodes can be realized by planning final robot positions prior to
deployment [11, 12, 13, 14, 15]. This planning should be de-
signed to optimize the communication link, and thus this ap-
proach is suitable for a static environment rather than dynamic
environments. This is also useful for cases where a rapid estab-
lishment of the network is required, because this approach does
not require a search task.

Besides, as the extension to an end-to-end communication
study, maximizing coverage area of mobile robot network [16],
a distributed algorithm for improving coverage [17] and an
algorithm for coverage [18, 19] have been studied. While
these studies focus on an establishment of the optimal network,
we mainly focus on building an end-to-end communication as
quick as possible because this research considers that sending
a group of robots out an emergency situation where recovering
or rebuilding network connection has to be a top priority.

2.2. Location and Allocation Problems

In this paper, we define a problem of finding optimal posi-
tions of robots as a series of Location and Allocation problems.
In order to solve Location and Allocation problems, many of re-
searches in various areas such as industrial engineering for op-
eration research [20, 21, 22, 23, 24] have been done. However,
our approach can be novel because we consider this problems
as a combination of the robot and sensor network deployment.

The problem of Location and Allocation is also known as the
multi-weber problem or the p-median problem. For example,
[21] tackles finding optimal locations of facilities and allocation
of customers to the facilities so that the total distance customers
moved and the operating expense is minimized. With consid-
eration of obstacles and some forbidden areas, they employ a
Genetic Algorithm (GA) to effectively approach this combi-
natorial problem. In addition to GA, a variety of approaches
have been introduced to solve Location and Allocation prob-
lem; Simulated Annealing [22], Fuzzy algorithm [23], and Par-
ticle Swarming Optimization (PSO) [24]. From the point of
view of the performance evaluation, the overall performance of
optimization algorithm for robots is generally determined based
on energy consumption, computation time, and complexity. An
extensive research has been conducted to develop optimal al-
gorithms for the performance. For instance, a number of stud-
ies have been conducted to minimize power consumption [25]
or to maximize path lifetime [26]. Similarly, the researchers
have focused on finding optimal placements for mobile relays
[27, 28, 29]. The mobility of robots is also an important charac-
teristic for the overall performance so that several studies also
has been done [30, 31].

Nonetheless, evolutionary based algorithms such as the GA
and PSO have a number of desirable properties when it comes
to solving a combinatorial problem. More specifically, they are
simple and fast and it is capable of finding the global minimum
in general. Because the problem we tackle in this paper does not
require the online operation demands (albeit a fast processing
may be desirable), it is acceptable to set up the problem, run
an optimization algorithm, and then implement the solution. It
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is for this reason that we have decided to use the evolutionary
based algorithms for this robotic network deployment problem.

2.3. Our Previous Works

A great deal of basic research in the individual areas of
wireless networks, localization, autonomous robotics, and self-
organizing systems has been completed, along with a working
prototype system [32, 33, 7]. Our research concept began by
using small robotic units, and successfully demonstrated the
ability to have robots perform specified actions based on the
radio frequency (RF) signal received [32]. From this basic
concept, we derived a more robust system of outdoor robots
that were equipped with mesh access points (APs) with the
goal of autonomously establishing a linear wireless broadband
mesh network [33, 7]. Our previous research has shown that
the linear expansion concept could stretch a network’s cover-
age pattern. However, it is still hard to apply to complex envi-
ronments where curved or high-order formations of robots are
needed. Thus, research in this paper serves to transform the
linear formation technology into the adaptive and flexible for-
mation according to problem domains requiring abnormal mo-
bile communications such as difficult, complex, or dangerous
conditions.

3. Location and Allocation Problem

3.1. Problem Statement

Let Lc and Le be two fixed locations given on an open (x, y)
coordinate plane. Lc is the location of the command center node
that represents the source of the wireless signal. Le is the loca-
tion of the end node that represents the destination of the wire-
less signal, as shown in Figure 2. There are also n variable
relay locations (L1, L2, . . . , Ln) that are to be determined and n
robots with initial known locations (R1, R2, . . . , Rn) to be allo-
cated to the variable relay locations. For simplicity, let n refer
to the number of robots as “Robot1”, “Robot2”, “Robot3”, . . . ,
“Robotn”.

The number of locations and robots is then n, and the num-
ber of possible allocation cases becomes n!. Since the number
of possible cases increases exponentially as n increases, it is al-
most impossible to mathematically obtain explicit solutions to
the Allocation problem. As a matter of fact, [14, 34] proposed
an approximation algorithm to find the solution to the Location
and Allocation problem theoretically, but they assumed the al-
gorithm would only be applied in an open space, without any
obstacles. Therefore, if there are obstacles introduced, the al-
gorithm does not work. Instead of using approximation algo-
rithms, we approach such problems with heuristic search meth-
ods.

Given the defined parameters above, we can set the goal of
this problem to be finding:

1) The locations of relay nodes (L1, L2, . . . , Ln) that
connect Lc to Le

2) The allocation of robots to those locations,

such that the total distance between the robots’ initial locations
and the variable locations is minimized. The distance, for ex-
ample, can be calculated with the sum of dotted lines depicted
in Figure 2 (b). Given the initial locations of Ri robot, this prob-
lem is then formulated as follows:

Minimize : f (x) =

n∑
i=1

dist(Ri,Li) (1)

Subject to: dist(Lc,L1) ≤ Or

dist(Li,Li+1) ≤ Or i ∈ {1, 2, . . . , n − 1},
dist(Ln,Le) ≤ Or

(2)
n∑

i=1

zi j = 1 j ∈ {1, 2, . . . , n} , (3)

Li = {(x, y)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}

(4)i ∈ {1, 2, . . . , n}
where,

x =



index of Roboti allocated to Li
...

index of Robotn allocated to Ln

x coordinate of L1
y coordinate of L1

...
x coordinate of Ln

y coordinate of Ln


,

i ∈ {1, 2, . . . , n} ,
dist() = the Euclidean distance on Cartesian coordinate,

Li = location of relay node to be determined,
Ri = initial location of the robot that will be allocated to

Li, (e.g., if Robot4 is allocated to the first node, then
R4 becomes R1, as expressed in Figure 2. It can be
obtained by “If-Else” statement with Algorithm 1.),

zi j =


1, the i-th robot (Roboti) is allocated to the

j-th node (L j)
0, otherwise,

xmin, xmax, ymin, ymax represent the size of a map.

It is worth noting that minimizing the total distance may not
guarantee that the networked mobile robots carrying wireless
devices build the end-to-end communication in the quickest
time, because the time required to complete building the com-
munication link may depend on the robot whose the initial lo-
cation is the farthest away from its allocated (variable) location.
Nonetheless, since all robots will always move to their nearest
locations as possible, it is quick enough to meet the goal we
set up. Furthermore, it will enable robots that arrive at their
locations can immediately start doing a secondary task, for ex-
ample, gathering surrounding information (e.g., hazmat) with
sensor units as a surveillance or exploration robot, while wait-
ing the last robot reaches its allocated location. Once all robots
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Figure 2: Example scenario: networked robots are deployed to connect two end nodes, creating end-to-end communication with the minimum traveling distance:
(a) Four mobile robots and two ends points (a command center node and an end node) are given in a known environment; (b) Locations and allocations of the robots
are determined by an algorithm proposed in this paper.

arrive at their allocated locations, then they start doing their pri-
mary task, i.e., building the end-to-end communication link.

In order to realize the goal of this problem in a real world
situation, we have made following assumptions: 1) Every relay
robots are initially connected, 2) One of the relay robots should
be initially located within the area where a wireless signal is

reachable from the command center, and 3) The command cen-
ter has a processing capability. With the assumptions 1) to 3),
the optimal problem is calculated on the command center with
a centralized concept offline, the calculated destinations are re-
spectively sent from the command center to each relay robot,
and then every robot starts moving to their destination. This
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Algorithm 1 “If-Else” statement for robot allocation problem.
Note that % marks a beginning of a comment.

for i = 1 : n do
if x(i) == 1 % if Robot1 is allocated to i-th node then

Ri = R1
else if x(i) == 2 % if Robot2 is allocated to i-th node then

Ri = R2
else if x(i) == n− 1 % if Robotn−1 is allocated to i-th node
then

Ri = Rn−1
else if x(i) == n % if Robotn is allocated to i-th node then

Ri = Rn

end if
end for

approach would bring a benefit to saving energy of the relays
robots, and to extending the network lifetime because the entire
optimization is calculated on the command center, and the re-
lay robots do not consume any of energy due to the optimization
process.

In addition to the three assumptions, we have an additional
assumption that the map where robots will work to establish an
end-to-end communication link is pre-known. Actually in most
of the disaster situations, maps can be provided in advance, al-
though there is a possibility that some parts of the map could
be altered due to disasters. However, even if there are some
alternations in the map, this cannot be found before the com-
pletion of actual exploration. Because of that, it would be the
best to approach the Location and Allocation problem based
on the pre-known maps. Therefore, we approach the problem
with the pre-known maps and then if mobile robots observe any
obstacles or some altered environments while moving towards
their destination, each robot could run their obstacle avoidance
algorithm, alter their pre-planned paths, and finally reach their
destination.

Since the main goal of this research is to relay radio signals

with antennas that are affixed to networked robots, we must take
the constraints of the antenna performance, such as operating
range, into account. So, this problem contains inequality con-
straints that restrict the maximum distance between two adja-
cent nodes, as stated in Eq. (2). In Eq. (2), Or is the maximum
(or allowable) operating range between two neighboring robots
and should be set to be larger than

Or �

[
dist(Lc,Le)

n + 1

]
. (5)

For instance, Lc and Le are set to (0.0, 0.0) and (100.0, 100.0)
in an open space, and five links are established by four relays
(one link is made of two relay nodes, as seen in Figure 2 (b)),
then Or has to be greater than 28.284.

Equality constraints in Eq. (3) state that every robot should
be allocated to a different node. Eq. (4) states that every relay
node should be bounded in a map (i.e., in the operating envi-
ronment).

Algorithm 1 shows an “If-Else” statement for the robot al-
location problem, when there are more than three robots em-
ployed (n ≥ 3). Note that if two robots are employed, there
are only two possible solutions to the Allocation problem (i.e.,
case 1. R1 = R1 and R2 = R2, or case 2. R1 = R2 and R2 = R1).
In this case, there is only one “else if” statements included in
Algorithm 1.

In Eq. (1), x is a vector that includes decision variables for
the optimization problem. Two examples of x found by Eq.
(1), satisfying all constraints Eqs. (2) − (4), are presented in
Eq. (6) and Eq. (7), and their final deployments are depicted
in Figure 3, with full notations. In the figures, minimizing the
sum of the distance of the dotted red lines is the objective of the
optimization.

x =


Allocation︷︸︸︷
2 1 3

Location︷                                                ︸︸                                                ︷
59.72 24.00 124.31 70.68 182.56 124.31

 ,when n = 3

(6)

x =


Allocation︷ ︸︸ ︷
1 3 2 4

Location︷                                                                   ︸︸                                                                   ︷
55.24 23.17 125.10 40.78 162.21 82.15 199.50 136.38

 ,when n = 4 (7)

As shown in the examples above, the first three and four
elements represent Allocation with discrete variables, indicat-
ing the index of robots, and the rest of the elements represent
Location with continuous variables (in Cartesian coordinates).
Because of these mixed variables, this problem is classified as
a combinatorial problem, as mentioned earlier.

3.2. Additional Constraints

3.2.1. Dense Space
The Location and Allocation model given in the previous

subsection considers the ideal case, where there are no physi-
cal obstacles. It is feasible that end-to-end communication may

need to be established in an open space. In practice, however,
obstacles or forbidden regions must be taken into consideration.
For example, buildings, trees, and cars can be regarded as phys-
ical obstacles, in this research. Thus, we introduce additional
possible constraints in this section.

First, it is apparent that the location of a relay node cannot be
within the region of obstacles, as robots cannot reside in that re-
gion. This situation is depicted in Figure 4 (a). Second, consid-
ering the propagation of radio signals from antennas, it would
be much better if line-of-sight is guaranteed between adjacent
nodes. If this constraint is not taken into consideration, the ra-
dio signal may be blocked by the physical obstacles (we call
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Figure 3: Two examples of mobile robot deployment: (a) When there are three
networked robots; (b) When there are four networked robots.

this case as “non-line-of-sight”), as depicted in Figure 4 (b), and
this may result in substantial energy loss. Furthermore, if direc-
tional antennas are used for transmissions like in [35, 36], guar-
anteeing line-of-sight becomes more essential. More detailed
information on this line-of-sight consideration can be found in
[37, 35, 38].

For the first constraint, let Ok be an obstacle region (k = 1,
2, . . . , m), where m is the number of obstacles. Then, we can
define the location constraint as follows,

Li <
m⋃

k=1

Ok, i ∈ {1, 2, . . . , n} , (8)

where n is the number of robots. Eq. (8) states that the locations
of any relay node should not be within any obstacles.

For the second constraint, let Osu
k be a line segment of the
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Figure 4: Two cases of improper establishment of network: (a) Robots can-
not be located within the region of obstacles; (b) Non-line-of-sight deteriorates
propagation of radio signal from antennas.

obstacle (u = 1, 2, . . . , l and k = 1, 2, . . . , m), where l is the
number of line segments (vertices) of the k-th obstacle, and m
is the number of obstacles. In addition, let Rsv be a line seg-
ment of the two adjacent relay nodes (v = 1, 2, . . . , n+1). For
example, Rs1 is that of (Lc, L1), Rs2 is that of (L1, L2), and so
on. Then, we can define the line-of-sight constraint as follows,

Osu
k ∩ Rsv = φ. (9)

Eq. (9) denotes that there is no intersection between the line
segments of obstacles and the line segments of the two adjacent
relay nodes.

If Eq. (9) is imposed as a constraint in the optimization prob-
lem, the location constraint in Eq. (8) is not needed, because
Eq. (9) will not tolerate any intersections between the line seg-
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ments of obstacles and the line segments of the two adjacent
relay nodes. If one relay node is located within the region of an
obstacle, as expressed in Figure 4 (a), at least one intersection
takes place and will be eliminated by Eq. (9). Yet, there would
be some cases where there would be no need to impose the line-
of-sight constraint, leaving only the obstacle constraint (e.g.,
when obstacles barely affect the radio propagation property of
antennas, because they are composed of low-density material,
such as wood or glass). Therefore, Eq. (8) is necessary for this
research.

3.2.2. Intersection Elimination
To fulfill the robot’s main role of carrying a relay, the net-

worked robots will depart from Ri and eventually be located at
Li, by tracking the computed paths between Ri and Li. In many
cases, the computed paths may form intersections, as shown in
Figure 5 (a). If paths intersect, it does not necessarily mean
that a collision will take place. The robots will only collide if
they reach the intersection point at the same time, but it would
be better if we could make a robot tracking system simpler,
by means of removing intersection points in the path planning
stage. Thus, depending on the details of a given problem, it
is logical to consider adding an additional constraint that guar-
antees there are no intersections between the computed paths.
An example of successful, non-intersecting paths is depicted in
Figure 5 (b).

For this intersection constraint, let P(Ri, Li) be a set on points
on the line segment connecting between i-th relay node location
Li, and its corresponding robot initial location, Ri. Then, we can
define the constraint as follows,

P(Ri, Li) ∩ P(R j, L j) = φ, (10)

where i , j and i, j ∈ {1, 2, ..., n}. Thus, Eq. (10) denotes that
there are no intersections between the line segments of com-
puted paths.

3.2.3. Shortest Path
Given two points Ri and Li at the coordinates representing

an initial location of the robot and a location of a relay node,
the objective function in Eq. (1) is obtained by calculating
the distance of the direct line segment between the two points.
However, when there are physical obstacles between the two
points, the direct line segment becomes an unrealistic path for
the robot, and could not be used for the objective function. In
this case, shortest path algorithms, such as Dijkstra’s algorithm
[39] and A∗ algorithm [40] could be employed to obtain the re-
alistic shortest path, while avoiding obstacles for the objective
function as shown in Fig. 6.

4. Optimization Methodology

In Section 1, we stated that this robot deployment problem
is a combinatorial problem that includes discrete and continu-
ous design variables. Hence, it is appropriate to approach the
problem with evolutionary heuristic methods, such as Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO). In
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Figure 5: Two possible solutions in the same environment: (a) There is one
intersection between the computed paths for Robot1 and Robot2; (b) There is
no intersection. Eliminating intersections can make a robot tracking system
simpler.

this section, we present these two optimization methods and
describe how to exploit to this problem with a complete simu-
lation.

4.1. Genetic Algorithm (GA)
GA begins by defining a chromosome to be optimized. If a

chromosome ct
h has Nvar variables given by x1, x2, . . . , xNvar ,

then the chromosome can be described as

ct
h = [x1, x2, . . . , xNvar ], ∀h = 1, 2, . . . ,Npop (11)

where Npop is a population size, and t indicates an index of iter-
ations. In this research, the chromosome represents a decision
variable vector x, shown in Eq. (1). Thus, Nvar can be obtained
by Nvar = 3n.
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The chromosome is encoded to have a binary string with
a different number of bits in each variable (gene). For the
Allocation problem, the number of bits should be larger than
or equal log2 (n), and for the Location problem, the number
of bits should be carefully determined by considering a desired
resolution of x-y coordinate of Li. There is an observable rela-
tionship among the resolution, the number of bits, and bounds
on variables, as follows,

r =
xU − xL

(2b − 1)
(12)

where
xU = upper bound on variable,

xU = [x1
U , x2

U , . . . , xU
Nvar

]
xL = lower bound on variable,

xL = [x1
L, x2

L, . . . , xL
Nvar

]
b = number of bits to code xi (i = 1, 2, . . . ,Nvar),

b = [b1, b2, . . . , bNvar ]
r = resolution between discretized values of xi,

r = [r1, r2, . . . , rNvar ].

An example of the encoded chromosome (when n = 4) is
shown as follows,

C = [
Allocation︷            ︸︸            ︷

01︸︷︷︸
gene1

· · · 11︸︷︷︸
gene4

Location︷                                      ︸︸                                      ︷
000010111100︸            ︷︷            ︸

gene5

· · · 111100101111︸            ︷︷            ︸
gene12

]. (13)

Then, the GA is run with the following steps:

1) Define the GA parameters (e.g., population size Npop,
crossover probability Pc, mutation probability Pm, and ter-
mination parameters Nqa).

2) Randomly generate an initial population.

3) Evaluate fitness of each individual, using Eq. (1).

4) Select two parents.

5) Crossover for two offspring.

6) Repeat step 4) and 5) until population filled.

7) Examine new population for mutation.

8) Return to step 3) for next generation, until the process con-
vergence is achieved.

In this study, population size Npop is determined by Npop =

4s, where s is a string length that can be obtained by s =
∑n

i=1 bi.
Our implementation of the GA uses a tournament selection
method for step 4), that randomly picks a small subset of chro-
mosomes from the mating pool, and the chromosome with the
lowest cost, in this subset, becomes a parent. For step 5), we
use the uniform crossover, where the first child receives a bit
from the first parent with crossover probability Pc, and the sec-
ond child receives a bit from the second parent. When using the
uniform crossover, Pc is generally set to 0.5, like a “coin flip”,
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Figure 6: Examples of results achieved by Dijkstra’s algorithm: sky-blue lines
indicate shortest paths connecting an initial location to destination; red dashed
lines indicates a direct line connecting an initial location to destination without
this shortest path consideration.

generating p = rand[0,1]. For step 7), we randomly switch ze-
ros and ones with mutation probability Pm. In this study, Pm is
determined by Pm = (s+1)/(2Npops). For step 8), the stopping
criterion is activated when the total number of iterations reaches
a fixed number Nqa.

In order to evaluate the feasibility of the GA for the robot de-
ployment problem in this study, we implemented a simple sim-
ulation, which is described in this section. For simplicity, let us
assume that there are no obstacles (i.e., it is an open space that
does not require taking Eq. (8) and Eq. (9) into consideration,
but intersection constraint Eq. (10) is added). Also, let n be
4, so there are four networked robots carrying wireless devices,
as summarized in Table 1. Additionally, necessary settings for
this first simulation are summarized in Table 2. Figure 7 (a)
illustrates the given problem.
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Table 1: Robot’s name and initial location (when n = 4)
Robot’s name Initial location of robot (x,y)

Robot1 R1 = (0.0, 30.0)
Robot2 R2 = (0.0, 60.0)
Robot3 R3 = (0.0, 90.0)
Robot4 R4 = (0.0, 120.0)

Table 2: Fixed settings for the first simulation
Lc = (0.0, 0.0), Le = (240.0, 180.0),

xmin = 0.0, xmax = 240.0, ymin = 0.0, ymax = 180.0

Given the settings in Tables 1 and 2, four design variables xi,
where i = 1, . . . , 4, are needed to represent the robots’ alloca-
tion to the nodes. For the four design variables, bi is set to 2,
xL

i = 1, xU
i = 4, and the resultant ri becomes 0.53. However, we

rounded the resolution ri = 0.53 to ri = 1 to make this variable
an integer. For the Location problem, eight design variables xi,
where i = 5, . . . , 12 are needed to represent the locations of the
nodes Li. For the four design variables’ x coordinates of Li, the
coding accommodates a minimum value of 0.0 (this value in-
dicates xmin in Eq. (4)), a maximum value of 240.0 (this value
indicates from xmax), and a resolution of 0.058, using 12 bits.
Similarly, for the four design variables’ y coordinates of Li, the
coding accommodates a minimum value of 0.0 (this value in-
dicates ymin), a maximum value of 180.0 (this value indicates
ymax), and a resolution of 0.044, using 12 bits. It is worth not-
ing that the number of bits can be decreased or increased. If it
is decreased, the resolution of the solution will become coarser,
but the process will take less time Conversely, if the number
is increased, the resolution of the solution will become finer,
but processing time will be increased. Using these parameters,
the prescribed population size Npop is then set to 416, and the
prescribed mutation rate Pm is set to 0.0012. The maximum
number of iterations Nqa is set to 150.

There are two different scenarios carefully considered in this
simulation. The first scenario is when Or is set to 60.2, which
is slightly longer than the exact operating range calculated with
the right side of Eq. (5). As a matter of fact, the exact range
calculated in this example is 60.0, but we add 0.2 to it because
GA does not find the exact solution, in general, but does find
approximate solutions. Given this pre-setting, if solutions to
the Location problem make all nodes Li lie on the straight line
that connects Lc to Le, it can be said that this result confirms
the solutions satisfy the operating range constraint in Eq. (2)
very efficiently, as well as minimizing the sum of the distances
between the robots and the final nodes.

The second scenario is when Or is set to 70.0, which is large
enough to satisfy a condition mentioned in Eq. (5). Given this
pre-setting, if solutions to the Location problem make all nodes
Li closer to the robots Ri, while satisfying the operating range
constraint, it can be said that this result confirms that the solu-
tions effectively minimize the sum of the distances between the
robots and the final nodes.

The results of this simulation are depicted in Figure 7. More
specifically, figures 7 (b) to (f) show the movements of genes

marked with “o” at the different iterations of the first scenario.
As shown in the figures, every gene is well-bounded, which
satisfies the size constraint in Eq. (4), and every gene con-
verges into solutions as time progresses. Until the 10th iter-
ation, the Allocation problem was not solved, as Robot1 was
not allocated to any nodes, and Robot3 was allocated to two
nodes. Also, until the 30th iteration, there were intersections
between Ri and Li, which violated the intersection constraint
described in Eq. (10). However, at the 90th iteration, those
two constraints are no longer violated. After the 90th itera-
tion, the solutions started trying to minimize the distances be-
tween Ri and Li, as expressed in Eq. (1). From these patterns
of convergence, we could ascertain that the GA initially tried
to solve the Allocation problem by getting out of the domain
where Allocation problem-related constraints are violated. Af-
ter that, the GA focuses on solving the Location problem to
minimize the distances, while satisfying all constraints.

The final results of the first scenario, using the GA, are shown
in Figure 7 (g). This figure was captured at the 150th iteration
(recall that we set Nqa = 150). In this figure, minimizing the
sum of the distance of the four dotted red lines is the objective,
and the value of the sum is shown in the top left corner. One
can notice that there are three “Success” messages at the top.
These indicate whether the solutions can satisfy constraints or
not. Therefore, there could be “Failure” messages at the top
as well, which would indicate the solutions violate some con-
straints. The first message relates to the operating constraint
in Eq. (2), the second message relates to the line-of-sight con-
straint in Eq. (9), and the last message relates to the intersection
constraint in Eq. (10). Also, numbers on the bottom show the
distances of each link that connects adjacent nodes from Lc to
Le. From these numbers, we can determine which links violate
the operating range constraint.

From Figure 7 (g), it can be seen that the determined nodes
Li form an almost straight line connecting Lc to Le, as we ex-
pected, and every robot is allocated to different nodes Li, while
satisfying all constraints that we imposed. Figure 7 (h) shows
the result of the second scenario. From this figure, it can be seen
that the final nodes Li are closer to the robots Ri than in the first
scenario, while satisfying all constraints, as well as minimizing
the sum of the distances.

From these two simulations, it has been shown that the GA
is capable of solving the problem of the robot deployment in
an open space. However, as we have dealt with relatively easy
problems that have no obstacles and no additional constraints,
it is not possible to conclusively say that our GA can fully
solve the optimization problem that we formulated in this study.
Therefore, we will examine the GA with more complex prob-
lems in Section 5.

4.2. Particle Swarm Optimization (PSO)

PSO is based on swarm behavior observed in nature, such as
fish flocking and birds schooling. PSO shares some important
attributes with GA, in that these two evolutionary algorithms
are population-based search methods. In other words, PSO and
GA move from a set of population to another set of population
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Figure 7: Results of the simulation on GA: (a) to (f) Transitions of gene’s movement at different iterations; (g) Final results of the first scenario with Or = 60.2; (h)
Final results of the second scenario with Or = 70. An example video showing a GA running is available at https://youtu.be/mYSIWKahcJY.
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in a single iteration using two major components: a stochastic
component and a deterministic component [41].

In PSO, a set of randomly generated particles searches the
space of an objective function over a number of iterations, using
a large amount of information sharing by all members of the
swarm. The detailed steps of PSO that we exploited in this
study can be found in [42]. Simply put, PSO requires three
steps to meet the objectives of this research, as follows:

1) Initialization - The positions xt
h and velocity vt

h of Npop

particles are randomly generated using upper xU and lower
xL bounds on the design variables as follows,

x0
h = xL + r(xU − xL), and v0

h = 0, ∀h = 1, 2, . . . ,Npop

(14)
where r represents a random number (i.e., r = rand[0,1]).

2) Velocity update -At each iteration, the velocities of all par-
ticles are updated as follows,

vt+1
h = wvt

h + αr(g∗ − xt
h) + βr(x∗h − xt

h) (15)

where g∗and x∗h are the position of the current global best
position and each particle’s best position, respectively; w
is known as the inertial weight, α and β are acceleration
constants and determine how much the particle is influ-
enced by its best position.

3) Position update -This is the last step in each iteration, and
the new position of each particle k can be updated by

xt+1
h = xt

h + vt+1
h . (16)

In addition to the last two steps of velocity and position up-
dates, fitness calculations using Eq. (1) are repeated until the
total number of iterations reaches a fixed number Nqa, as the
GA adopts this stopping criterion. For the Allocation problem,
which we formulate as an integer problem, when i = 1, 2, . . . ,
n (i is the index of a decision vector x), the values r are all
rounded. This modification is then applied to step 1) and 2).

In order to validate the PSO for the network problem, we
again implement the simulation with two scenarios, as in the
previous section. Thus, every parameter for the simulation en-
vironment is the same as the GA implementation. Additionally,
for the PSO, we set w to 0.5, α to 1.5, and β to 1.5, since we
determined that they find the solutions well and provide the best
convergence rate for the problems throughout this study.

The results are presented in Figure 8. Figure 8 (a) depicts the
given problems, and Figures 8 (b) to (f) show the movements
of particles marked with “x”, at the different iterations of the
first scenario. As shown in the figures, every particle converges
as iterations increase. Also, the figures show that the PSO tries
to solve the Allocation problem first and then focus on solving
the Location problem, much like the GA. The final results of
the first scenario are shown in Figure 8 (g). From this figure, it
can be seen that the final nodes L j form an almost-straight line
that connects Lc to Le, and every robot is allocated to a different
node L j. The latter result validates that the Allocation problem

satisfies the equality constraint Eq. (3), and that the modifica-
tion of the rounding process works well for an integer problem.
Figure 8 (h) shows the result of the second scenario. From this
figure, it can be seen that the final nodes L j are located closer to
the robots Ri than in the first scenario. With the naked eye, the
results of the PSO simulations seem to indicate the feasibility
of this optimization problem and are very similar to those of the
GA.

5. Simulations and proof-of-concept study

Since heuristic optimization algorithms accompany a search
task that may result in finding local minima and requiring a
number of evaluations, we evaluate its completeness (i.e., find-
ing the final solution), computational effort (i.e., the number of
function evaluations), and consistency in finding the final solu-
tion, in this section.

5.1. Simulation Setup
For this further investigation, we employ the proposed

method using GA2. The first test measures a success rate of
finding an acceptable solution by the proposed algorithm, using
10-run trials for 12 test problems. Due to this large amount of
test problems, we have decided not to impose the shortest path
constraint when calculating an objective function for this sim-
ulation testing. In fact, we observed from our preliminary tests
that employing Dijkstra’s algorithm to find a shortest path takes
about 0.02 sec for each run. This means that when there are
two robots operated, GA takes more than 10,000 cost evalua-
tions. Thus, it takes about 200 sec, i.e., longer than 3 minutes
to compute this optimization problem, which might be too long
to test all the trials and test problems.

Note that the solutions may or may not be the global mini-
mum. Thus, for convenience of evaluation, we will take into
consideration whether or not the algorithm could find the solu-
tions, if no constraints are being violated at the moment when
the convergence criteria are met. The second test investigates
the computational efforts of the proposed algorithm, using the
same data and convergence criteria. The criteria are defined as
follows, ∣∣∣ f (xt) − f (xt−q)

∣∣∣ ≤ ε. (17)

Eq. (17) is satisfied when the maximum change in best fitness
is smaller than the specified tolerance ε for a specified number
of moves q. In this study, q is set to 10, and ε is set to 10−5, for
all test problems. In addition, the maximum number of function
evaluations is included (i.e., the algorithm is stopped if t reaches
the 150th iteration).

For a set of 12 test problems, we vary the number of robots
n and the number of obstacles m. Two fixed end nodes are set
to Lc = (0.0, 0.0), Le = (240.0, 180.0), and the side constraint

2In fact, we also employed the PSO for this investigation during our pre-
liminary study but it showed that results from the PSO are mostly similar to
those from the GA and insignificant. Because of that, we do not include the
results to this paper.
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Figure 8: Results of the simulation on PSO: (a) to (f) Transitions of particle’s movement at different iterations; (g) Final results of the first scenario with Or = 60.2;
(h) Final results of the second scenario with Or = 70. An example video showing a GA running is available at https://youtu.be/YEBqGMHKJMo.
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Table 3: Nine problems with different settings

Problems Number of Number of Operating
Robots n Obstacles m range Or

Problem 1 2 0 120.0
Problem 2 3 0 95.0
Problem 3 4 0 80.0
Problem 4 2 1 120.0
Problem 5 3 1 95.0
Problem 6 4 1 80.0
Problem 7 2 2 120.0
Problem 8 3 2 95.0
Problem 9 4 2 80.0
Problem 10 2 3 120.0
Problem 11 3 3 95.0
Problem 12 4 3 80.0

xmin = 0.0, xmax = 240.0, ymin = 0.0, and ymax = 180.0 for all
the test problems. Also, all constraints we described in Eqs. (2)
− (10) are included. Representative parameters are summarized
in Table 3, and solution examples found by the GA in each test
problem are depicted in Figure 9.

5.2. Results and Discussion

Results for the tests are graphically summarized in Figure 10
and Figure 11. Figure 10 (a) shows the success rate of finding a
solution. As shown in the results, the proposed method mostly
found the solution in the various environments. More specifi-
cally, it found the solutions 9 to 10 times out of each 10 trials in
most cases (i.e, it shows a success ratio of higher than 90%). It
is worth noting that there are a total of 7 failures occurred (from
a total of 100 trials) in these tests. However, 4 of them almost
met the constraints as we rounded off the nearest thousandth
for the numbers of each constraint. Thus, only 3 manifest fail-
ures took place and actually they resulted from being trapped in
local minimum.

Results on the computational effort of the proposed method
are graphically summarized in Figure 10 (b) and (c). Figure
10 (b) shows the mean number of generations with 10-run tri-
als in each problem that we conducted for the completeness
test as shown 10 (a). As shown in this figure, the proposed
method demonstrates that convergence occurs very fast. Most
cases converge before reaching 50 generations and the graph
shows that the smaller number of robots converges faster than
the larger number of robots. This result is also shown in Figure
10 (c). Figure 10 (c) shows the mean number of generations
with the standard deviation. This figure indicates that the num-
ber of robots could affect the computational effort (see P1 to P3
and P 10 to P12) while the number of obstacles rarely does.

Figure 11 shows the mean value of the final solution with
standard deviation when the proposed method satisfies the stop-
ping criterion in each problem. Note that values from failed tri-
als are not included for this figure. As a result, variances of each
graph show that the proposed method is consistent with finding
the final solution. Specifically, when employing two robots, fi-
nal objective values seem to be very consistent. This result and

analysis are important in that this validates there is insignificant
effect of the random number generator required for GA process.

From these tests on the proposed method’s computational ef-
fort and consistency, we could observe that their variances be-
come wider as the number of robots increases. Considering the
number of variables in the optimization process increases as the
number of robots increases (in fact, one increase in the num-
ber of robots introduces three more variables to be optimized),
this increasing pattern could be expected. However, in order to
make the proposed system fully scalable, we should also take
into account this issue in the future. For this, we could consider
implementing a parallel programming technique as described in
[43].

5.3. Proof-of-Concept Study
In this subsection, we present a set of proof-of-concept study

to validate our hypothesis that eliminating intersections results
in a simpler robot tracking system, as stated in Section 3.2.2.

For the proof-of-concept study, we built miniature mobile
robots that can be remotely manipulated, as shown in Figure
12 (a). We attached a particular color patch to each robot and
installed a camera from the ceiling to identify the location and
direction of the color patch to estimate the robot’s current posi-
tion in real time, as shown in Figure 12 (b). The computation
for the Location and Allocation problem is computed offline
and resultant location and allocation data are remotely sent to
relevant robots to act online accordingly.

The first test was designed to analyze the difference in
elapsed times between two cases: (1) when there is an inter-
section between the ground tracks of two robots, and (2) when
there is no intersection. For this test, we initially placed two
robots on the left side and designated two target locations that
the two robots should move to on the right side. In this setup,
two cases of an allocation were possible for each robot. The
first allocation generated an intersection as shown in Figure 13
and the second allocation produced no intersection as shown in
Figure 13. Figure 15 (a) show a summary of elapsed times.
As can be seen when there were no intersections generated,
the robots reached their goal positions faster than when there
were intersections. These results could be expected because the
robots must decrease velocity or stop until the other completely
passes thru a region that is considered as a warning area, re-
sulting in an increased total elapsed time. Therefore, we were
able to validate our hypothesis that we can make a robot track-
ing system simpler by means of removing intersection points
during the path planning stage.

The second test was designed to analyze any differences in
elapsed times between two cases: (1) when allocation is deter-
mined by considering the robots’ distances to the nodes, and (2)
when allocation is determined by considering the robots head-
ings to the nodes. Resultant traces of the robots are depicted in
Figure 14. The top figures show when the robots first consid-
ered their distance to the nodes, and the bottom figures show
when the robots first considered their initial headings to the
nodes. Figure 15 (b) shows a summary of elapsed times from
these two different cases. As shown in the results, the two cases
showed little difference in elapsed time. This signifies that to
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Figure 9: Solution examples to the 12 problems for further tests. The figures in the same column include the same number of robots n, and the figures in the same
row include the same number of obstacles m.
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Figure 10: Results on tests of the proposed method’s completeness and computational effort in finding the solution: 10 trials were conducted for each problem.

minimize the total elapsed time for the robot task, the most im-
portant metric was distance from the initial location of robots to
their goal position. Conversely, the initial heading of the robots
is less important.

6. Field Experiments

6.1. Preparation for Experiments
To test the proposed methods, a prototype of the relay mo-

bile robot system was developed and is shown in Figure 16.
Every robot is homogeneous and equipped with the same com-
ponents. Each robotic system is made up of the P3AT mobile
robot, an embedded microprocessor with various sensors, AP

(Access Point) with an omni-directional antenna, a wireless sta-
tion with an omni-directional antenna, and a network switch, as
shown in Figure 16 (b).

The P3AT, a compass and GPS sensors are connected by a se-
rial connection to the embedded microprocessor that processes
all required controls. For the network configuration, we set up
the indirect point-to-point link with a combination of a station
and AP available from Ubiquiti Networks Inc. This configura-
tion acts like a very long wired cable and allows us to build a
transparent Ethernet bridge between two end nodes wirelessly.
One of the two end nodes, which is the left most node in Figure
16 (a), is a command center. The other end node, which is not
shown in the figure, could be anything that has the capability to
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(a) Miniature robots (b) Robot control system

Figure 12: A proof-of-concept design.

carry a wireless station with an omni-directional antenna such
as a robot or a human user. Every network device including an-
tennas, an embedded microprocessor, and switches was given a
static IP address for remote access and for receiving the desired
position of each robot from the command center by numeri-
cally solving Location and Allocation problems. For example,
“192.168.1.131” is assigned to the first relay robot and the po-
sition data are transfered to the robot through the IP address.

6.2. Experiments

In order to validate the proposed system, we conducted ex-
tensive field tests using two different sets: 1) with three robots
and 2) with two robots. The tests were conducted at the Cum-
berland Park in West Lafayette, Indiana USA, which is a wide
open site and the direct distance between the two end nodes
was approximately 240 meters. For the tests, robots were ini-
tially located around one of the end nodes, i.e., the command
center and for the other end node, we installed a laptop running
the “iperf” Linux command for a data throughput test while
relaying robots move away from the command center to their
destinations. This was done to reinforce the assumption that

the calculated locations have a direct correlation to the best sig-
nal for a data link connection. To test this, a laptop was set to
a server mode, and a laptop on the command center side was
set to a client mode. A small amount of data was transferred
through the autonomously created link and a measurement of
the time to transfer rate was performed by iperf. The result-
ing measurement gives an accurate available throughput for the
established link.

The first test was done using three mobile robots with two
virtual obstacles as shown in Figure 17 (a). Given two end-
points (red circles in the figure) and map information such as
the physical location of obstacles (magenta rectangles in the fig-
ure), the Location and Allocation problem was solved (the three
green circles indicate the calculated locations where the relay
robots should reach) at the command center side, and calcu-
lated data were remotely sent to each robot. Upon receiving the
position data every robot started moving to the given way points
generated with the Dijkstra’s algorithm to reach their destina-
tions using a set of sensors such as GPS and a compass sensor.
Actual traces of the robots are depicted in Figure 17 (a), and
actual locations (relative travels) of the robots along with the
elapsed times are depicted in the top three graphs in Figure 17

16

http://dx.doi.org/10.1016/j.adhoc.2015.12.001


Preprint version accepted to Ad Hoc Networks, Elsevier - http://dx.doi.org/10.1016/j.adhoc.2015.12.001

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

180

X-axis (Pixel)

Y
-a

xi
s 

(P
ix

el
)

Robot Location/Allocation Problem

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

180

X-axis (Pixel)

Y
-a

xi
s 

(P
ix

el
)

Robot Location/Allocation Problem

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

180

X-axis (Pixel)

Y
-a

xi
s 

(P
ix

el
)

Robot Location/Allocation Problem

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

180

X-axis (Pixel)

Y
-a

xi
s 

(P
ix

el
)

Robot Location/Allocation Problem

�������� �	������

�
������ �
������

�
����
���������
����
����
�����

Figure 13: Trace of robots from proof-of-concept tests on intersection (top) vs.
no intersection (bottom).

(b). The top three graphs show that the robot 3 reached the des-
tination first, followed by the robot 1 and the robot 2. As clearly
shown in the figure, the Location and Allocation problem was
successfully solved, and every robots was able to explore and
reach their destinations safely and successfully. Results of the
network performance are shown in the bottom of Figure 17 (b).
Notably, an end-to-end communication started to be established
after 150 seconds lapse, which is really quick, considering the
robots being operated with a slow speed and in the large en-
vironments. It is not a surprise that the communication could
not be established at all for the first 150 seconds since some
robots were far yet to connect their neighboring nodes includ-
ing the two end nodes. On the other hand, the data throughput
noticeably increased as the robots were approaching their des-
tinations, i.e., an optimal location for the end-to-end commu-
nication. The data throughput recorded the highest value (7.88
Mbps) when the robot all reached their destinations, and there-
fore this clearly shows that our proposed method is validated.

The second test was done using two mobile robots with two
virtual obstacles in the same environment as shown in Figure
18 (a). Only difference from the previous test was the number
of the relay robots for the problem. This test was designed to
show the scalability of the scheme in this research. As a result,
the Location and Allocation problem was again successfully
solved with a longer operating range Or, and every robots was
able to reach their destinations safely as shown in Figure 18 (a).
The top two graphs show that the robot 2 reached the destina-
tion first, followed by the robot 1. Notably, an initial end-to-end
communication was established in a short time (i.e., it only took
120 seconds), and as similar to the first test, the communication
could not be established at all for the first 120 seconds as shown
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Figure 14: Trace of robots from proof-of-concept tests on distance-based (top)
vs. heading-based (bottom).
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Figure 15: Elapsed times from five different trials.

in Figure 17 (b). However, as the robots were approaching their
destinations, the data throughput increased and when the robot
all reached their destinations, the data throughput was the high-
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(a) A complete relay robot team

Station with Onmi-directional antenna

Compass and GPS sensors 

Embedded microprocessor

P3AT mobile robot

AP with Onmi-directional antenna

Network switch

(b) A robot with network components

Figure 16: A robotic relay system for the establishment of an end-to-end communication.

est (6.38 Mbps). Because only two robots were used in the en-
vironment, the final throughput was a bit lower than when three
robots were employed. While this shows that the use of the
three relay robots would be a better option for a better network
quality in this environment, the use of the two robots would be a

better option for a quicker establishment of the communication
link. The bottom graph in Figure 17 (b) shows that there are
some throughput drops after optimal points were achieved, but
this was caused by a human intervention who was getting closer
to the second mobile robot and acted as a physical obstacle to
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(a) Problem set

Desired Location Achieved

Desired Location Achieved

Desired Location Achieved

Communication Established

Optimal Point

(b) Actual locations of robots and data throughput

Figure 17: Experiments with three robots. (a) shows that solutions (green
dots) to the Location and Allocation problem, given environments with two end
points (red dots) and physical obstacles (magenta rectangles), and actual paths
of robots (red lines with a circle green lines with a diamond, and blue lines with
a square). (b) shows that robots’ actual relative movements and data throughput
along with the elapsed time. A video demonstrating this field experiment can
be found at https://youtu.be/o_25ZLFcNeA

the established wireless communication (you can check this out
the video). As a result, this test also clearly demonstrates that
our proposed method is feasible and effective in a real world
situation.

(a) Problem set

Desired Location Achieved

Desired Location Achieved

Communication

Established

Optimal Point

(b) Actual locations of robots and data throughput

Figure 18: Experiments with two robots. (a) shows that solutions (green dots) to
the Location and Allocation problem, given environments with two end points
(red dots) and physical obstacles (purple rectangles), and actual paths of robots
(green lines with a diamond and blue lines with a circle). (b) shows that robots’
actual relative movements and data throughput along with the elapsed time. A
video demonstrating this field experiment can be found at https://youtu.
be/8imsFuO-4Wo

7. Conclusions and Future Works

In this paper, we set a goal of minimizing the path required
for the deployment of networked robots in order to relay two
given end nodes and therefore create an end-to-end communi-
cation network. To achieve this goal, we addressed the fun-
damental problem of finding optimal locations and subsequent
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robot allocation. We present two optimization techniques: GA
and PSO, and we described constraints on the problem, by con-
sidering the propagation of radio signals, infeasible robot lo-
cations, and intersections between robot paths. Our simulation
testing results validate that the proposed methods are able to
find the acceptable solution and that they are robust and effi-
cient. In addition, proof-of-concept study and field experiments
demonstrated the effectiveness of the proposed concept and al-
gorithms.

This research mainly aims at introducing a way of apply-
ing two representative evolutionary heuristic algorithms to the
robotic network problem, and it is shown that they both are very
feasible. For potential future works, investigating their conver-
gence and efficiency would allow determining the more suitable
algorithm for this problem.

It is worth noting that although this paper supposes all robots
would carry the same wireless devices having the same operat-
ing ranges, the optimization problem we formulated allows us-
ing robots carrying different wireless devices having different
operating ranges. This flexibility would be greatly beneficial
especially when robots are heterogeneous cooperating together
to achieve their goals.

In addition, our proposed method can be greatly improved
if we exploit directional antennas for wireless communication
[35, 36]. To do so, we will solve another optimization prob-
lem: finding the best orientations of the directional antennas,
carried by the robots or placed at the locations of the end nodes
Lc and Le, in order to maximize the Received Signal Strength
Indication (RSSI). Combining and solving these two optimiza-
tion problems at the same time will enable the formation of the
long-distance coverage network.
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