
Image Processing and Model-Based Spill Coverage Path Planning
for Unmanned Surface Vehicles

Shaocheng Luo∗, Yogang Singh∗, Hanyao Yang∗, Jun Han Bae∗, J. Eric Dietz†, Xiumin Diao‡, and Byung-Cheol Min∗
∗SMART Lab, Department of Computer and Information Technology, Purdue University, IN 47907, USA

†Department of Computer and Information Technology, Purdue University, IN 47907, USA
‡School of Engineering Technology, Purdue University, IN 47907, USA

Abstract—Remote sensing technology and unmanned surface
vehicles (USVs) have great potential for spill coverage appli-
cations. However, there is still a lack of research on adequate
path planners for USVs based on remote sensing images. In
this study, we propose an image processing and model-based
path planner that can generate an efficient path for a USV to
cover a spill according to aerial images from remote sensing. We
mathematically formulate a spill processing model of the con-
ceptual USV, which can remove the spill by suction mechanism,
to determine its speed limit and operation range. To perform
coverage with high completeness to the spill in the workspace,
we first develop an image segmentation strategy and partition the
area with geometric tessellation. We then formulate the coverage
problem with tessellation as a traveling salesman problem (TSP)
and utilize the self-organizing map (SOM) approach for effective
path planning. Finally, with real aerial images containing spills,
we demonstrate the effectiveness of the proposed path planning
method.

Keywords—Unmanned surface vehicles, Spill removal, Image
processing, Remote sensing, Geometric tessellation, Traveling
salesman problem, Self-organizing map

I. INTRODUCTION

Harmful spills, such as spill blooms and chemical leakage,
in aquatic environments, including ditches and reservoirs sig-
nificantly affect ecosystems and public health. Timely response
and emergent restore operation are necessary to prevent further
damages. However, the lack of trained labors and potential
dangers for human operators in hazardous environments be-
come constraints and usually delay the process.

Water surface robots such as unmanned surface vehicles
(USVs) have been studied extensively recently. With aerial
images provided by manned/unmanned aerial vehicles (UAVs)
or satellites, the USV can be used in wide applications
including riverine environmental monitoring [1], flooded open-
pit mine 3D reconstruction [2], ocean cleaning [3], marine
incident response [4], and water and sediment sampling [5].

Nevertheless, a spill cleaning solution based on remote
sensing and USV technologies has not yet been fully explored,
mostly because of the lack of a functional spill removal USV
and an adequate planner that enables practical and efficient
USV operation with aerial images. For instance, [6] and [7]
implemented a monocat and catamaran type of water surface
vehicles, respectively, to confront oil spills. However, their
traditional conveyor belt based appliance can hardly separate
oil spills from water, which hence hinder a further promotion
of efficiency. Moreover, most of the vehicles used in large-
scale removal operations, such as proliferated plankton spill
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Fig. 1. A concept of the proposed image processing and model-based
spill coverage path planning for a USV. Provided that an aerial image is
obtained with remote sensing techniques, an effective path is planned using
our proposed image processing and geometric tessellation strategies for the
USV to travel and remove the spill. The size of square tessellation block
hUSV can vary and is decided by the spill removal rate of the USV.

processing and oceanic oil leakage restore, are designed of
being human-operated. No global information is utilized to
enable autonomy. In practice, the boundary of the spill can be
extremely coarse due to its own molecular characteristics and
interaction with water, which presents a substantial challenge
for the realization of a complete coverage operation. A prac-
tical solution for coverage control in the presence of coarse
boundary is rarely researched.

Therefore, in this paper, we propose an effective path
planner that can generate an efficient path for a USV to cover
a spill with aerial images provided from remote sensing. To
detect the spill area to be covered from an image, spill bound-
ary extraction and approximation, and square tessellation are
achieved via image processing. The model and spill process
capability of the conceptual USV platform are considered to
develop an effective path planner. The concept of the proposed
path planner is depicted in Fig. 1, where an efficient path is
generated from the aerial spill image.

The rest of this paper is organized as follows. The research
problem and approach are briefed in Sec. II. In Sec. III, we
mathematically formulate the process rate of spill absorbed to
the USV with suction while the USV is moving. Based on the
bounded spill process capacity, we determine the maximum
USV traveling speed vmax while separating the absorbed spill
from water. In Sec. IV, we introduce the developed image
segmentation strategy and implement a geometric tessellation



with squares over the area of interest where the spill locates
at. The size of squares for tessellation is decided according
to the USV process limit. After formulating the tessellation
coverage operation as a traveling salesman problem (TSP), the
suboptimal path planned for the USV is generated by applying
the self-organizing map (SOM) approach in Sec. V. The path
planning results are presented in Sec. VI with diverse aerial
images containing ground truth. The paper is concluded in
Sec. VII.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

In this research, we desire to realize a path planner that
takes aerial images from remote sensing as input and generate
an efficient path for USV to travel and remove the spill. To
do so, the following two questions must be addressed:

• Provided a generic USV that can remove the spill by
suction, what the maximum traveling speed vmax and
operation range hUSV are, assuming that the USV has a
bounded spill process capability denoted as V .

• Provided that the USV is traveling at the speed of vmax
with an operation range hUSV in removing the spill,
how to generate the shortest path for it to expedite the
operation while maintaining a high coverage rate to the
spill in the workspace.

For the first question, we propose a mathematical model
that takes into account how the spill and the USV mutually
affect each other when the USV is moving. Here, the amount
of absorbed spill is calculated by its area. Provided a bounded
capacity of V , we are able to determine the maximum USV
traveling speed vmax. After analysis and demonstration, we
justify that the higher speed the USV maneuvers, the less
operation range hUSV is. The detailed reasoning can be found
in Sec. III.

Define the operation range hUSV for USV traveling at speed
vmax, we address the second question by partitioning the
workspace using geometric tessellation method, in which the
dimension of tessellation blocks is bounded by hUSV . Since
we do not want the USV to traverse the entire workspace
and waste time, we utilize image processing techniques be-
forehand and only do tessellation to the spill rather than the
entire workspace. Due to this, the spill coverage problem is
formulated as a TSP, and an efficient path that the USV follows
to visit each tessellation block needs to be determined.

Because of the NP-hard characteristic of the TSP, we use
the SOM approach, along with the greedy algorithm and
2-Opt algorithm as comparisons, to produce a suboptimal
solution. The path derived is efficient in the sense of time
consumption, because the USV travels at the maximum speed
along the shortest path while removing the spill. We also
show that the geometric tessellation can deal with coarse
spill boundary cases, which are challenging in practice yet
sufficiently explored. Our solution is conceptually depicted in
Fig. 1.

Fig. 2. Conceptual design of the spill removal USV. The USV uses a water
pump to create suction and absorb spills coming from the eight nozzles with
both coarse filters and a separator.
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Fig. 3. The nozzle layout of a USV. The left figure shows the indices of
nozzles, while the right one shows the spill collected (shadowed areas) when
this robot is maneuvering with a velocity v.

III. SPILL PROCESSING MODEL WITH A USV PROTOTYPE

In order to show our contribution in determining the moving
speed and operation range of the USV, the prototype of a
generic USV needs to be demonstrated. We adopt a common
two-propeller driven USV as the end effector for our developed
planner, and we conceptually develop a polygonal shape
USV platform equipped with eight evenly distributed vacuum
nozzles along its edge, as shown in Fig. 2. This conceptual
platform is inspired by our previous work [8], [9]. When
the water pump runs and causes greater fluid pressure at the
bottom of the robot than on the surface of the water, the spill
on the surface can be sucked into the separator inside the robot
for segregation.

A proper processing model is indispensable in determining
the maximum speed for a USV, according to capacity. As
shown in the prototype of USV in Fig. 2 and Fig. 3 (left),
the diameter designed for USV is dUSV = 350 mm and
eight nozzles are arranged along the robot body to enable spill
removal operation.

When a USV is collecting spill, it should not exceed the
maximum power of the water pump creating vacuum pressure
and separator volume sufficient for separating spill from water.
Obviously, a larger USV has the higher capability in spill
removal. However, the size of USV depends on many factors,
including waterproofing and security of other parts, and is
therefore restricted. Because of the size restriction, too much



spill absorbed at a time may block the nozzles or damage
the separator. Therefore, the maximum linear velocity will be
calculated under the maximum capacity of the robot, which is
denoted as V in this paper.

In practice, not every nozzle has a chance to collect spill
in processing. Hence, we introduce a coefficient γnz that
represents the ratio of operating nozzles nnz to the total
number, i.e., γnz = nnz/8. It is evident to see the spill
collected by an individual USV can be formulated as γnzV
in unit time. When a USV is static and has velocity v = 0,
the width fUSV (t) of the coverage area has to follow a static
model shown in Theorem 1, which is depicted with a dark
shadowed ring ∆S in Fig. 3 (right).

Theorem 1 (Spill Processing Model in Static). If the USV
stays still in place (v = 0) and is fully surrounded by the
spill, the fUSV (t) follows the conclusion below:

fUSV (t) =

√
V
π
t+ c1 − c0, ∀t ≥ 0 (1)

where c0 = dUSV

2 and c1 = c20. t refers to the elapsed time.

However, since the USV is moving dynamically with a
velocity of v, an additional spill can spontaneously rush into
the robot, in addition to the spill collected with vacuum water
pump, creating an extra burden for the separator. Thus, we
need a dynamic spill processing model to determine the opti-
mal combination of spill absorbing rate and moving velocity
v. We assume that when the robot is moving forward, it cannot
capture spill located behind, as spill travels slowly. Thus,
nozzles {1,2,3,7,8} shown in Fig. 3 (left) are doing most of
the collection work, meaning γnz = 0.625. Considering those
facts along with Theorem 1, we build the dynamic processing
model as below.

Theorem 2 (Spill Processing Model in Moving). If the USV
moves with a velocity v 6= 0 in a fully spill surrounded area,
the spill collected with respect to the capacity of a USV has
to satisfy the following equation set:

∑
i

∆Si = ∆S11+∆S12+∆S2+∆S3 = γnzV·t = 0.625V·t,

(2)
where

∆S11 = ∆S12 = v(t) · t · fUSV (t),

∆S2 =
π

2

[
(fUSV (t) + c0)2 − c20

]
,

∆S3 =


c0v(t) · t sin c2 + (π − c2)c20 − c3(fUSV (t) + c0)2,

if v(t)t ≤ 2c0 + fUSV (t),

≈ 2c0v(t)t, otherwise.
(3)

c0 =
dUSV

2
,

c2 = arccos
(c20 + (t · v(t))2 − (fUSV (t) + c0)2

2c0t · v(t)

)
,

c3 = arccos
( (fUSV (t) + c0)2 + (t · v(t))2 − c20

2(fUSV (t) + c0)2t · v(t)

)
.

From Theorem 2, we can see the relationship between robot
moving velocity v and spill coverage radius fUSV that lead
to the maximum amount of spill harvested. In order to reduce
the computation cost and simplify the further analysis, we seek
for an approximate dynamic spill processing model that shows
this relationship in a more straightforward way.

Lemma 1. The relationship between robot moving velocity v
and spill area coverage radius fUSV can be approximated as

0.625V =

{
2vfUSV + c4v + c5V, if v(t)t ≤ 2c0 + fUSV ,

2vfUSV + 2c0v + 0.5V, otherwise,
(4)

where c4 = c0 sin c2, and c5 = 1
2 −

c3
π .

Proof. We examine the Theorem 2 and can show the following
conclusions with ease:

0 ≤ c2, c3 ≤ π;

∆S11,∆S12 = O(t1.5); ∆S2 = O(t); ∆S3 = O(t),

where O(·) means asymptotic upper bound.
As time elapses (t → ∞), we only remain those terms

∆Sx or part of a term ∆Sx with a higher order of t, thus (2)
becomes∑
i

∆Si = 0.625V · t

=


2vtfUSV + (π2 − c3)f2USV + c0vt sin c2,

if v(t)t ≤ 2c0 + fUSV (t),

2vtfUSV + π
2 f

2
USV + 2c0vt, otherwise.

Eliminate the factor t from both sides of the second equal
sign and let c4 = c0 sin c2, c5 = 1

2 −
c3
π , we show (4). This

concludes Lemma 1.

From (2) and (4), we can see that the faster the USV moves
forward, the more spill is collected passively, meaning more
spill are fed into the robot while less spill are collected with
suction. By contrast, if the robot moves slowly, the fewer
spill is flooded into the robot, but more of them are collected
actively by the pumps. As a piece of evidence, the spill
absorbing border fUSV grows further apart in a period of time
when the robot moves slowly.

As we concluded earlier that the robot could not exceed
a maximum speed of vmax because excessive spill collected
may damage the robot and cause the task to fail. Such speed
limitation vmax can be determined from the result of Lemma 1.
It is preferable for the USV to move at as a high speed as
possible when processing because this results in a shorter
operation time. As the speed is bounded by vmax, we want
the robot to maneuver at the maximum speed vmax without
detected risks.



Lemma 2. The maximum speed vmax allowed for a USV
processing within a non-hollow and symmetrical spill is

vmax =
1

16c0
V. (5)

Proof. Considering (4), since the fUSV represents the spill
actively collected by a USV, the faster USV moves, the less
fUSV value is. Then we can simply let fUSV → 0, thus we
obtain ṽmax as below:

ṽmax =

{
5−5c5
8c4
V, if ṽ(t)t ≤ 2c0,

1
16c0
V, otherwise.

We then decide 1
16c0
V to be the candidate of vmax because it

is derived on the basis that a robot moves with a higher speed,
according to (3) and (4). This concludes the proof.

With a USV traveling at the maximum speed vmax, the
corresponding f∗USV can be obtained from (4), which will
be used to determine the maximum size of a packing shape
in workspace tessellation. However, if the real maximum
speed of the USV is bounded mechanically and less than the
computed vmax, the actual fUSV value may be greater than the
computed f∗USV . Ultimately, the width that the USV covers in
maneuvering is hUSV = 2fUSV + dUSV . Our solution shows
strong adaptation to diverse hUSV value, as demonstrated in
Sec. VI.

IV. IMAGE SEGMENTATION AND WORKSPACE
TESSELLATION

In this work, we present an image processing strategy that
performs image segmentation with aerial images provided
by remote sensing and geometric tessellation to the area of
interest. Compared with other work done in spill removal
operation, such as [10] and [11], our work shows more
efficiency in dealing with the workspace that is not fully filled
with spill. Specifically, we perform an image segmentation
strategy before planning the path for coverage operation, thus
the USV only travels within the area of spill. Meanwhile, the
segmentation method shows strong capability in handling a
coarse boundary case that has long been the challenge in the
research community.

A. Image Segmentation

We first process the image by applying a median filter and
BGR2GRAY methods [12] and convert the color image into
a gray-scale version, as indicated by Step 1 in Fig. 4. Based
on the gray-scale image, we then use the Canny operator to
extract the boundary of the spill [13]. For some spill with
coarse and obscure boundary, we propose to apply polynomial
fitting and approximate the boundary with a spline. These are
summarized as Step 2. In Step 3, since the spline plus image
border forms a closed shape, we then differentiate the target
area, which has a much of the spill, from the background by
referring to the average gray value. Usually, the background
such as water has much higher greyscale (intensity) than the

1. Image preprocessing with OpenCV
median filter, BGR2GRAY, adaptive

thresholding

2. Boundary extraction and

approximation

Canny operator, polynomial fitting

0. Color aerial image of ground

truth from remote sensing

5. Geometric tessellation

and centroids of blocks

3. Image segmentation with fitted

boundary and selection of target area
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4. Geometric tessellation

over the target area
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area > µ(fUSV)² ?
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Fig. 4. The flowchart of image segmentation and workspace tessellation,
along with the techniques used.

spill, such as oil and algae. Eventually, we perform a geometric
tessellation to the target area with squares in Step 4. Since
there may be small patches outside the target area or are not
covered by tessellation blocks, we examine the remaining area
of the original image after subtracting the tessellated area. If
some large spill patches remain, we can perform boundary
extraction again until no large spill patch can be detected in
the image. The coefficient µ refers to the ratio of the area of
one remaining spill patch to the area of a tessellation block
(hUSV )2. Ultimately, the tessellation outcome is produced in
Step 5.

Noticeably, from Step 2 to Step 5 we confirm that our
strategy can deal with spills with a coarse boundary. We first
approximate the spill boundary with image processing. Thus
we remove a large portion of spill. By adjusting the coefficient
µ and re-doing Step 4, we are able to cover the remaining spill
patches and achieve the coverage with high completeness.

We evaluate the goodness of boundary approximation with
both of the coefficient of determination R2 and the Root mean
square error (RMSE), defined as below. In our test, the R2 and
RMSE values are indicated in every specific figure in the third
column of Fig. 5.

R2 , 1− SSres
SStot

, RMSE ,

√∑T
i=1(yi − fi)2

T
, (6)

where SSres =
∑T
i=1(yi − fi)

2, SStot =
∑T
i=1(yi − ȳ)2.

Here, yi refers to the y coordinate of a point on the extracted
spill boundary, fi refers to the yi values after fitting, ȳ means
the mean of yi, and T refers to the total number of pixels
along x-axis.

B. Geometric Tessellation

We perform geometric tessellation with squares to the areas
of interest, as square can realize a high coverage rate than
circles [14]. The squares are of uniform dimension and the
length of side equals hUSV , which is proposed in Sec. III.
The tessellated areas can be covered by the USV if it visits
all the centroids of the tessellation blocks, namely waypoints.
Therefore, the spill coverage problem is formulated as a TSP.
The shortest path for such travel can be obtained by solving



this TSP and an efficient solver for the problem is elaborated
in Sec. V.

V. PATH PLANNING OF THE USV

A. Multi-Goal Path Planning Problem and SOM Approach

In this section, we discuss the generation of an efficient path
for USV visiting all the tessellation blocks and performing
spill removal operation. Since we want the USV to return to
the original location after the operation, for the purpose of
replacing the filters and recharging the robot, a closed path
is desired. Provided that the centroids of tessellation blocks
are known, it becomes a multi-goal path planning problem.
The concept of multi-goal path planning is defined in terms
of finding a shortest and closed path for a given set of goals
in the workspace. This problem is inspired from planning of
robotic manipulators where multiple goals have to be attained
by the robot in an effective time period [15].

The problem of multi-goal path planning in spill cleaning
USV can be conceived as a TSP where each tessellation
square represents a domain or goal point. As the TSP is
modeled as uni-directed and weighted graph leading to higher
computational complexity, a property of self-organizing map
(SOM) method is utilized to obtain a near optimal solution to
it.

SOM is an artificial neural network based solution that can
realize dimensionality reduction using competitive learning
[16]. The update function for neuron v with the weight vector
of Euclidean distance Wv in SOM is shown below:

Wv(s+ 1) = Wv(s) + θ(u, v, s) ·α(s) · (D(t)−Wv(s)), (7)

where s refers to the step index, t refers to training sample
index, u represents is the index of the best matching unit for
the input vector D(t), α(s) is the learning coefficient, and
θ(u, v, s) is the neighborhood function reflecting the distance
between neurons u and v in the step indexed by s.

The SOM approach is widely used in meteorology and
oceanography [17] and other geological analyses. In this work,
the SOM approach is used in planning the path for spill cov-
erage, which results are shown in Sec. VI. The current study
makes a first attempt towards understanding the effectiveness
of the proposed SOM path planner for the concept of spill
cleaning.

B. Benchmarking

In order to benchmark the proposed SOM-based path plan-
ner, it is compared against the greedy algorithm [18] and 2-
Opt algorithm [19]. Both the greedy algorithm and the 2-Opt
algorithm are well-studied and widely applied in TSP related
cases. 2-Opt is one of the most basic and diffusely used local
search heuristics for the TSP. Additionally, 2-Opt shows its
significance, particularly by achieving good results of TSP in
terms of running time and length of the path.

VI. RESULTS AND DISCUSSIONS

In this section, we validate our proposed solution with five
real images from Google Images, ranging from oil spill in
the ocean to algae patches in the lake. The five images are
numbered and shown in the first column of Fig. 5. For the
rest of the columns, we demonstrate the image segmentation
process and tessellation results described in Fig. 4. The images
in the first column of Fig. 5 are the original color image
containing ground truth, which is referred by Step 0 in Fig. 4.
The second column shows the results of boundary extraction
with the Canny operator after converting the color image
into a grey-scale one (Step 2 in Fig. 4). The third column
demonstrates the approximated boundary of the area of interest
(Step 3 in Fig. 4). From image2 and image5, we can see
that the approximated boundary fairly delineated the area
of the spill in the presence of a coarse boundary. The last
column shows the outcome after square tessellation with the
gray-scale image as background (Step 4 in Fig. 4). From the
tessellation outcome of image5, we can see some large spills
outside the approximated boundary are covered with a few
extra tessellation blocks. It is because we set µ = 10% and
have to run Step 2- 4 multiple times to get the tessellation
outcome from Step 5. All the tessellation blocks are of the
same size in Fig. 5, which is hUSV = 40 pixels. Since the
dimension of the tessellation block depends on the total pixels
of the image, and considering that the original images listed
are of different sizes in pixels, the tessellation blocks in the
last column of Fig. 5 look different in presentation. The size
of the tessellation block reflects the physical dimension with
a uniform scale.

We execute the image processing as well as path planning
algorithms on NVIDIA Jetson NanoTM, which is a single board
computer with applicable size, weight, and power consumption
for the control of small-size robot such as our USV. The
NVIDIA Jetson Nano is equipped with a Quad-core ARM
Cortex-A57 processor, 4 GB 64-bit LPDDR4 RAM, and 16
GB eMMC Flash.

The generated paths for each image in Fig. 5 are shown
in Fig. 6 using SOM approach with hUSV = 40 pixels.
The computation cost and other facts of path planning after
running on Jetson Nano are summarized in Table I. For an
image with more pixels, it deserves more tessellation blocks
as the image represents a larger physical area, and hence
higher computation cost. For instance, it took 105.97 seconds
for image5 to generate a sub-optimal path and meanwhile,
more neurons and iteration times are needed. However, image3
took 105.97 seconds to get the path while using only 8%
number of neurons of image5. We did not specify the starting
point of the USV in Fig. 6, as the USV may start from any
tessellation block. Even if the USV is outside the spill, its
traveling distance to the closest block is negligible comparing
to the overall path length.

A wider operation range hUSV helps reduce the number of
tessellation blocks as well as computation costs. The outcomes
of having hUSV = {30, 40, and 50} are shown in Table II,



(a) image1 (b) image1 boundary extraction (c) image1 boundary approximation (d) image1 square tessellation

(e) image2 (f) image2 boundary extraction (g) image2 boundary approximation (h) image2 square tessellation

(i) image3 (j) image3 boundary extraction (k) image3 boundary approximation (l) image3 square tessellation

(m) image4 (n) image4 boundary extraction (o) image4 boundary approximation (p) image4 square tessellation

(q) image5 (r) image5 boundary extraction (s) image5 boundary approximation (t) image5 square tessellation

Fig. 5. The procedure of the image segmentation using five different real aerial images. The real images are presented in the first column. The outcomes
after boundary extraction are shown in the second column, while the approximated boundary is shown in the third. The last column demonstrates the results
after applying square tessellation with hUSV = 40 pixels.



TABLE I
COMPUTATION COSTS AND OUTCOMES OF PATH PLANNING WITH FIGURES FROM FIG. 5 USING SOM APPROACH (hUSV = 40 PIXELS).

Metrics image1 image2 image3 image4 image5

Computation time (s) 76.18 83.36 62.51 98.38 105.97
Neurons created# 392 504 104 1112 1416

Iterations# 19901 20738 15478 23376 24181
Total length of path (pixels) 2080.779 2643.399 560.871 5824.980 7330.534

TABLE II
COMPUTATION COSTS AND OUTCOMES OF PATH PLANNING WITH image1 AND image3 FROM FIG. 5 WITH hUSV = {30, 40, AND 50} PIXELS, BY

USING SOM, GREEDY ALGORITHM, AND 2-OPT ALGORITHM.

Images hUSV value SOM Greedy 2-Opt
C′time (s) N ′s# Itr′s# P ′ length C′time (s) P ′ length C′time (s) P ′ length

image1
30 89.09 672 21697 2666.976 2.39 3147.935 90.05 2660.207
40 76.18 392 19901 2080.779 0.46 2502.363 18.78 2102.835
50 72.98 248 18375 1681.480 0.11 2030.552 4.44 1667.099

image3
30 66.83 160 16914 654.213 0.03 618.911 1.09 655.774
40 62.51 104 15478 560.871 0.01 506.634 0.3 560.472
50 58.26 72 14235 480.786 0.01 417.799 0.09 480.786

(a) image1 (b) image2 (c) image3

(d) image4 (e) image5

Fig. 6. Planned paths for image1–image5 using SOM with hUSV = 40 pixels.

after testing with image1 and image3. Beside less computation
time, denoted as C ′ time in Table II, a greater hUSV value
also leads to a shorter path length, denoted as P ′ length in
Table II. The planned paths of USV by having different hUSV
values are depicted in Fig. 7.

To evaluate the performance of SOM in generating the
sub-optimal path, we also present the results by applying
the greedy algorithm and 2-Opt algorithm. We still test with
image1 and image3. The quantitative results are presented in
the rightmost part of Table II, while the planned paths are
presented in Fig. 8. By comparing Fig. 8 with Fig. 7(a) and
Fig. 7(c), we can see that SOM approach generates a smoother
path than the other two, although it takes much longer

computation time. The greedy algorithm typically yields the
longest path length, yet the shortest computation time. But
for the cases with very few tessellation blocks, the Greedy
algorithm may yield a better solution, as indicated by image3
in Table II. 2-Opt algorithm maintains a good balance between
computation time and total path length, but it becomes slower
than SOM if more tessellation squares are involved. We would
suggest using the greedy algorithm for computation time
sensitive tasks, and 2-Opt algorithm for situations with less
tessellation blocks or waypoints. SOM approach can usually
yield a better solution than many other solvers, and this further
strengths its wide application in oceanography and geographic
analysis.



(a) image1 (hUSV = 30 pixels) (b) image1 (hUSV = 50 pixels)

(c) image3 (hUSV = 30 pixels) (d) image3 (hUSV = 50 pixels)

Fig. 7. Planned paths for image1 and image3 using SOM but with different
hUSV values.

(a) image1 using greedy algorithm (b) image1 using 2-Opt algorithm

(c) image3 using greedy algorithm (d) image3 using 2-Opt algorithm

Fig. 8. Planned paths for image1 and image3 using greedy algorithm and
2-Opt algorithm, with a uniform hUSV = 30 pixels.

VII. CONCLUSION AND FUTURE WORKS

This paper presents an image processing and spill cleaning
model based efficient path planning method using SOM ap-
proach. Specifically, the image processing is used to produce
a more targeted tessellation to the workspace, while the
spill cleaning model derived from a USV collecting spill in
maneuvering is used to determine the dimension of the tessel-
lation blocks. The planned path is obtained by applying SOM
approached, and its performance is evaluated by comparing
with the greedy algorithm and 2-Opt algorithm. This solution
is proved to be capable in dealing with a diversity of oil
spills, especially the spills with coarse boundary, featuring a
deterministic tessellation block size hUSV .

In our future work, we will mainly focus on USV implemen-
tation and field tests in order to validate our solution system-
atically. In addition, for a large-scale spill, we will explore a
multi-USV system based solution and deploy multiple USVs
in operation. Meanwhile, we will incorporate an unmanned
aerial vehicle (UAV) into the existing solution and realize a
fully autonomous spill removal system.
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