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Abstract—In this paper, we propose a fault detection and iso-
lation based attack-aware multi-sensor integration algorithm for
the detection of cyberattacks in autonomous vehicle navigation
systems. The proposed algorithm uses an extended Kalman filter
to construct robust residuals in the presence of noise, and then
uses a parametric statistical tool to identify cyberattacks. The
parametric statistical tool is based on the residuals constructed by
the measurement history rather than one measurement at a time
in the properties of discrete-time signals and dynamic systems.
This approach allows the proposed multi-sensor integration
algorithm to provide quick detection and low false alarm rates
for applications in dynamic systems. An example of INS/GNSS
integration of autonomous navigation systems is presented to
validate the proposed algorithm by using a software-in-the-loop
simulation.

I. INTRODUCTION

Security of Cyber-Physical Systems (CPS) has garnered sig-
nificant attention as a major issue with regard to autonomous
vehicles. Today’s autonomous vehicles enable the deployment
of safety technologies, such as automatic emergency braking,
collision warning, and Vehicle-to-Everything technologies. In
the near future, these systems will be available in all vehicles
to help achieve zero fatalities, zero injuries, and zero accidents.
However, behind the great potential of these innovations, a new
challenge of ensuring security from cyberattacks needs to be
addressed.

A typical autonomous vehicle receives and transmits a
great deal of information between sensors, actuators, and the
electronic control units, all providing access for attackers [1].
From this point of view, cybersecurity is imperative. Units
that govern safety should be protected from malicious attacks,
unauthorized access, or dubious activities, all of which could
cause harmful outcomes. For example, an autonomous vehi-
cle’s navigation system must be secured because it controls
real-time position data directly linked to the physical behavior
of the vehicle. We have a real-world example [2] in which a
hack was able to remotely hijack a car, and other examples
[3], [4] in which unmanned aerial vehicles were captured
and controlled via Global Positioning System (GPS) signal
spoofing. Practical studies on the analysis of security vulnera-
bilities of autonomous vehicles have been discussed in [5], [6].
Similarly, an extensive study of potential cybersecurity threats

to autonomous vehicles was published in the open literature
[1]. This study presented many possible attack methods and
identified that sensor spoofing and false data injection could
result in the worst safety related issue.

Securing autonomous vehicles’ safety is challenging be-
cause it requires the full knowledge of applications that consist
of numerous hardware and multi-layered architectures [7].
For instance, an autonomous vehicle navigation system is
generally comprised of multiple sensors such as Inertial Nav-
igation System (INS) and Global Navigation Satellite System
(GNSS). These two different types of sensors have inherent
limitations so that integration methodologies for such systems
have been widely introduced to combine the advantages of
both technologies [8]. However, an integrated system does
not have any safety functions against cyberattacks, leaving
it highly vulnerable. Additionally, the lack of knowledge
of multi-sensor integration makes autonomous vehicles more
exposed to cyberattacks. A fault tolerant multi-sensor per-
ception system was presented to provide fault-free inputs for
critical functions of mobile robots [9]. All of the previously
mentioned studies suggest that there are rapidly growing needs
for ensuring cybersecurity in autonomous vehicles.

One of the common approaches for achieving security
guarantee is the Fault Detection and Isolation (FDI) method.
This approach has been widely studied in various applications
such as spacecraft [10], aircraft [11], power system [12], and
automobile [13]. In general, a fault detection algorithm gener-
ates a residual and compares it with a predefined threshold. If
the residual exceeds the threshold, the algorithm reveals a fault
and an alarm is triggered. In this manner, abnormal dynamic
behavior and abrupt system changes caused by cyberattacks
can be detected. The authors in [14], [15] have presented a
remarkable comparison of existing residual generation algo-
rithms and threshold determination techniques.

The primary focus of attack detection for dynamic systems
is to generate residuals and design decision rules based upon
these residuals. Ideal residuals would be zero under normal
operation when there is no attack. However, residuals are
subject to the presence of noise and unknown errors in real-
world applications [16]. For this reason, it is challenging to
generate robust residuals that are insensitive to noise and



uncertainties yet sensitive to attacks in order to provoke a
quick alarm [17]. Optimal filters and state observers have been
proposed to generate a sequence of residuals that resemble
white noise in normal operation [18], [19]. After residual
generation, an attack alarm will be triggered at the moment
residuals exceed the threshold. Another challenge here is to
determine the threshold limit. This is a fundamental limita-
tion of attack detection because determining thresholds is a
compromise between detecting true attacks and avoiding false
alarms. Some studies have proposed statistical approaches to
generate an adaptive threshold in order to avoid false alarms
[20], [21]. Others have used a hypothesis test with Boolean
questions to determine system attacks [22].

Although the aforementioned studies have presented various
strategies and solutions for attack detection, there are still
questions to address. The lack of knowledge of interaction
among sensors, actuators, and electronic control units in-
creases the possibilities of being compromised by unidentified
source. Therefore, the following research questions can be
raised:

• How will the driver know when he or she has to take
back control from full self-driving mode due to security
breach?

• How will the system identify possible attacks against
multi-sensors that are tightly coupled instead of a single
sensor?

• How will the system present state estimates as close to
the true value as possible in the presence of noise without
compromising response time or sensitivity?

To provide answers to the questions, this paper focuses on
possible attacks on the autonomous vehicle navigation sys-
tems. It is a highly vulnerable system because it handles
signals from external sources. Thus, this study determines that
a vehicle’s navigation system is being attacked if any abrupt
change or unexpected dynamic behavior has been identified by
a proposed algorithm. We assume that system alterations are
caused by false data injection attacks, corrupted signal reading,
sensor failure, or any combination of these.

To summarize, the main contributions of this work are as
follows:

1) Development of an attack-aware multi-sensor integration
algorithm for the autonomous vehicle navigation system;

2) Generation of robust residuals in the presence of uncer-
tainties;

3) Design of a parametric statistical test that enables the
proposed algorithm to generate a quick detection alarm
and low false alarm rate;

4) Application of the proposed algorithm to the detection
of attack on INS/GNSS integration of autonomous ve-
hicles;

5) Verification of the application in a customized software-
in-the-loop simulation.

The rest of this paper is organized as follows. In Section II,
an attack-aware multi-sensor integration is developed with the
strategies of residual generation and threshold determination.

Fig. 1. An overview of the proposed attack-aware multi-sensor integration
system. An attack is introduced to the sensor.

In Section III, the proposed attack detection algorithm with an
application to the autonomous navigation system is introduced
and a simulation is designed to validate it. Finally, conclusions
and future works are discussed in Section IV.

II. PROBLEM FORMULATION

This section provides a Kalman filter-based estimation for a
multi-sensor integration and detection algorithm. The system
model that we consider is illustrated in Fig. 1. The actuator
sends a command to the plant in accordance with the control
input and then the sensors measure some of the states. These
states are fed into the state estimator to predict the states.
Lastly, the detector determines if there is an attack on the
sensor through comparison between state estimations and
sensor measurements.

A. Attack Model

We investigate attacks in the state or measurement equation
of a discrete liner time-invariant (LTI) system represented by a
state-space model. The state-space model with given matrices
A,B, and C is given as

x(k + 1) = Ax(k) +Bu(k) + ν(k) (1)
y(k) = Cx(k) + ω(k), (2)

where x ∈ Rn, y ∈ Rm, and u ∈ Rr represent state
vector, output vector, and control input vector, respectively,
and where ν and ω are process and measurement noise that
are represented by two independent white noise sequences
with covariance matrices Q and R, respectively. If a sensor
is being compromised that means unknown signals have been
injected, added, or modified to the sensor, the LTI system (1)
and (2) can be written as follows:

x(k + 1) = Ax(k) +Bu(k) + ν(k)

yα(k) = Cx(k) + α(k) + ω(k),
(3)

where α ∈ Rm denotes additive attacks on a sensor and the
state with the subscript α represents the system after an attack
occurs. The key idea behind this is that the difference induced
by attacks would be observable from the detection algorithm
in the presence of uncertainties.



Fig. 2. Subsystems of the sensor and the state estimator. These subsystem
are used in the Kalman filter-based multi-sensor integration.

B. Multi-sensor Integration

A state estimator is designed to predict states from avail-
able measurements since not all the states of a system are
observable in real-world applications. Two typical navigation
solutions of autonomous vehicles, INS and GNSS measure-
ments, are considered as shown in Fig. 2. An INS uses
an Inertial Measurement Unit (IMU) to track the position,
velocity, and orientation of a vehicle relative to an initial point,
orientation, and velocity. A GNSS provides satellite signals
that can be processed in a GNSS receiver, allowing the receiver
to estimate its current position and velocity. The advantages of
both technologies can be combined by fusing these navigation
solutions. There are no states directly affected by the INS
measurements or the GNSS measurements in the system model
(1), but they interact through the output vector (2) determined
by the measurement models:

y =

[
yGNSS
yINS

]
. (4)

Under the assumption that the system will stay in the steady-
state until any attacks happen, it enables the system to identify
any abrupt changes on sensor measurements. An estimator
dynamics given by the following steady-state Kalman filter
is considered:

x̂(k + 1) = Ax̂(k) +Bu(k) +K[y(k)− ŷ(k)], (5)

where Kalman gain is K = PCT (CPCT + R)−1 with the
covariance matrix given by P = A[P − PCT (CPCT +
R)−1CP ]AT+Q. Note that the detectability of (A,C) ensures
the existence of such estimator. This multi-sensor integration
gives a continuous position estimation and achieves precise
vehicle control.

C. Detection Algorithm

The main idea of the detection capability is to gener-
ate robust residuals to uncertainties and determine sensitive
thresholds to false alarm. As shown in Fig. 3, the detector
determines the system condition at each time step through
statistical hypothesis testing that compares the residual and
threshold generated. The residual is the difference between

Fig. 3. A subsystem of the detector. A hypothesis testing determines the
system functionality.

the actual measurements and the estimates. A sequence of the
residuals is defined as

r(k) = yα(k)− ŷ(k). (6)

The residuals evolve with the output estimate given by
ŷ(k) = Cx̂ and the estimation error defined as e(k) = x− x̂.
The residual dynamics is written as

r(k + 1) = Ce(k + 1) + α(k + 1), (7)

where the estimation error dynamics given by e(k+1) = (A−
KC)e(k). Regardless of the availability of prior information,
the residual is ideally zero before the attack and nonzero after
the attack. Thus, if the system is under normal operation, the
mean of the residuals will be zero and the covariance will have
a value:

E[r(k + 1)] = 0 (8)

Σ[r(k + 1)] = CPCT +R, (9)

where E[·] denotes the expected value and Σ[·] denotes the
covariance matrix. The system is able to construct a two-sided
hypothesis testing to make a decision at each time step when
given a set of samples. It determines the system’s abnormal
behavior with the null hypothesis of normal operation and the
alternative hypothesis of abnormal operation as follows:

H0 : r(k) ∼ N (0,Σ)

H1 : r(k) � N (0,Σ),
(10)

where N (σ,Σ) denotes the probability density function of the
Gaussian random variable with mean σ and covariance matrix
Σ. The test will continue as long as the decision favors the
hypothesis H0 while the test will be stopped and restarted if
the decision favors H1. Decision rules for rejecting the null
hypothesis are based on the Cumulative Summation (CUSUM)
algorithm which was introduced by Page [23]. In case of the
system described in (10), the two-sided CUSUM test is defined
as

S(k + 1) =

{
max (0, S(k) + |r(k + 1)|) if S(k) ≤ τ(k)

0 and kα = k if S(k) > τ(k).

(11)



The null hypothesis is rejected if the test statistics S is
greater than the threshold τ . In this case, the test provides
an attack alarm time kα and the test starts over. The null
hypothesis is accepted if the test statistics S is less than or
equal to the threshold τ . The test continues without stopping in
this case. In practice, this test collects a number of samples and
calculates their weighted sum to detect a significant change in
the mean of samples. Note that a selection of the sample size
N = 1, 2, · · · , k + 1 is to find a balance between response
time and sensitivity while a selection of the threshold is to
find a balance between sensitivity and a false alarm rate.

III. APPLICATION TO NAVIGATION SYSTEM OF
AUTONOMOUS VEHICLES

In this section, the proposed attack-aware integration al-
gorithm is applied to a navigation system of an autonomous
vehicle in the presence of uncertainties and unknown attacks
on sensors. It is imperative that units such as the navigation
system that govern safety are protected from malicious attacks,
unauthorized access, or dubious activities. This is because a
small change could result in significant changes in behavior.
For the simulation studies, a vehicle model and sensor models
are considered. An EKF is used for online estimation and
multi-sensor integration as described in Section II-B. Accord-
ing to the detection algorithm in Section II-C, a significant
change in the mean is detected and indicates an attack. A
numerical simulation with a robotic simulator demonstrates
the performance of the proposed algorithm. The following
assumptions are considered through the simulation: no attack
on multiple sensors at a time; a random attack injection time;
an arbitrary magnitude of attack but greater than sensor biases.

A. Design of Software-in-the-loop Simulation (SILS)

A software-in-the-loop simulation is designed to evaluate
the proposed algorithm with an application of autonomous
vehicles. The complete model of the simulation is illustrated
in Fig. 4. The simulation runs on Robot Operating System
(ROS), and it includes two ROS nodes as shown in Fig. 4a.
One node is MATLAB that runs the multi-sensor integration
and the detection algorithm, and another node is Gazebo that
runs the robotic simulator in a customized world as shown in
Fig. 4b. Each node is able to create a unique topic in ROS
message type. It enables each node to exchange data via topic
subscription and publication without conflict.

For the model of an autonomous vehicle in the simulation,
the CAT Vehicle, a full-sized model of Ford Escape developed
by the Compositional Systems Laboratory at the University of
Arizona [24], was used. It was actuated to be controllable
through unique ROS topics. The simulation started with pro-
viding a set of desired waypoints to the mathematical model
of the vehicle in MATLAB. The model then published the
velocity commands subscribed by the robotic simulator in
Gazebo. The CAT Vehicle in Gazebo followed the commands
and published its local position data subscribed by the position
controller in MATLAB to generate a new velocity command
for the next time step. This feedback loop ran continuously

(a) Feedback loop enclosing ROS environment variables. An attack-
aware multi-sensor integration algorithm is built in the MATLAB node,
and a robotic simulator runs on the Gazebo node. Each node is able to
exchange data via topic subscription and publication with unique types
of ROS messages.

(b) Gazebo simulation environment. A vehicle follows the desired path
which is a straight line from the initial location at the bottom left to the
home at the top right.

Fig. 4. Software-in-the-loop simulation environment.

and recursively until the vehicle reached the final destination
regardless of attacks, and the sampling rate was 10 Hz.

B. Implementation

A loosely coupled INS/GNSS navigation model with a
vehicle model is considered to represent an autonomous ve-
hicle navigation system. Firstly, an EKF-based multi-sensor
integration is developed for the residual generation. It is
comprised of the state model and the measurement model.
Consider the equation of motion for the vehicle is governed
by the following dynamics:

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ,
(12)

where x, y, vx, and vy represent the position along the eastern
axis, the position along the northern axis, the velocity along
the eastern axis, and the velocity along the northern axis, re-
spectively. The yaw angle is represented as θ. The continuous
time state equations can be discretized with the sampling time
T which gives the nonlinear discrete-time state model under
normal operation as:



x(k + 1) = x(k) + Tvx(k) cos θ(k)− Tvy(k) sin θ(k)

y(k + 1) = y(k) + Tvx(k) sin θ(k) + Tvy(k) cos θ(k)

θ(k + 1) = θ(k) + T θ̇(k)

vx(k + 1) = vx(k) + Tax(k)

vy(k + 1) = vy(k) + Tay(k)

θ̇(k + 1) = θ̇(k)

ax(k + 1) = ax(k)

ay(k + 1) = ay(k)

bθ̇(k + 1) = bθ̇(k)

bax(k + 1) = bax(k)

bay (k + 1) = bay (k),
(13)

and the linear measurement model under normal operation is
given by

yx(k + 1) = x(k)

yy(k + 1) = y(k)

yθ(k + 1) = θ(k)

yθ̇(k + 1) = θ̇(k) + bθ̇(k)

yax(k + 1) = ax(k) + bax(k)

yay (k + 1) = ay(k) + bay (k),

(14)

where a and b represent the acceleration and bias, respectively.
Note that the process noise ν and measurement noise ω are
additive to each equation. These models are linearized to cor-
respond with the state-space model in (1) and (2) by using the
state and measurement Jacobian matrices. In addition, initial
states x(0), state error covariance P , process noise covariance
Q, and measurement noise covariance R are carefully chosen
according to hardware specifications. The models in (12)-
(14) integrate multiple sensors to predict the vehicle states
under normal operation. This integrated architecture ensures
that a continuous navigation solution is always produced,
regardless of the existence of attacks. Following the state
estimation under normal condition, the system under attack
(3) is considered. These two different measurement models
are used for the residual generation in (6). The decision rules
in (11) then determine if there is a significant change in the
vehicle position at each time step. It is verified in the following
section.

C. Results

During the simulation, an attack was introduced at the
GNSS receiver at 40 seconds to test if the proposed detection
algorithm can identify the attack. A separate function from
the detection algorithm injected the attack into the receiver
measurement if the simulation clock reached 40 seconds, and
there was no data exchange with the detection algorithm. The
magnitude of the attack was 10 meters, which is larger than
the GNSS receiver bias.

The estimation error in Fig. 5 shows the estimation per-
formance of the multi-sensor integration. There are quite
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Fig. 5. North position estimation error corresponding to an attack in the
vehicle navigation system. A peak is observed around 40 seconds but it does
not indicate that the peak has been caused by the attack.
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Fig. 6. North position measurement error corresponding to an attack in the
vehicle navigation system. The measurement error jumped around the 40
second mark by approximately 10 meters but it does not guarantee that the
shift occurred due to the attack.

small errors, which means it provides a continuous and high-
bandwidth navigation solution, until a peak around 40 seconds.
The peak may imply that there was an attack around 40
seconds but it is insufficient evidence to determine that the
peak was due to an attack. This is because an attack is not
the only cause of a peak during state estimation. For example,
it can be caused by signal attenuation, data loss, time delay,
bursty packet dropping, etc. Similarly, the measurement error
in Fig. 6 indicates that there was an abrupt shift around
40 seconds on the north sensor measurement. This is not
sufficient to determine if an attack was introduced because
it is unable to verify where the shift originates. Consequently,
one can indicate a suspicious jump or shift from the multi-
sensor integration but it is insufficient to determine that there
is an attack on the vehicle. On the other hand, the evolution
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Fig. 7. Test statistics evolution corresponding to an attack in the vehicle
navigation system. The proposed algorithm identified a significant change of
the residuals that exceeds the upper limit of the threshold as soon as the attack
was initiated at 40 seconds.

of the test statistics in Fig. 7 clearly shows that there was a
significant change that caused the residual to jump the upper
bound of the threshold around the 40 second mark. The test
statistics were calculated by (11), and the upper and lower
bounds of the threshold were generated by using the weighted
sum of the first 10 samples. Based upon these parameters,
the detector in the navigation system determined that there
was an attack around 40 seconds when the residual went
above the upper limit of the threshold, and the corresponding
time was automatically generated. It was 40.2 seconds in this
simulation, two time steps behind the attack (i.e. an attack was
injected at k = 400 but kα = 402), a fairly quick detection
because it was only two sampling steps behind the actual
attack. In addition, there were a number of ups and downs prior
to the attack but they stayed within the threshold boundary,
allowing the detection algorithm to avoid a false alarm. Thus in
this application, using the proposed attack-aware multi-sensor
integration system provides a method to detect an attack as
quickly as possible with no false alarm.

IV. CONCLUSION

This research presented a statistical approach to the prob-
lem of attack detection on the multi-sensor integration of
autonomous vehicle navigation systems. Starting with a state-
space model of the system under attack, a parametric statistical
tool with a multi-sensor integration strategy was developed to
identify an attack. Finally, a simulation was designed to verify
the proposed detection system and results were presented. A
few limitations in this study remain: 1) the detection system
was unable to identify an attack that was smaller than the
sensor bias, but the vehicle was still under the control, and
2) the detection system was unable to detect an attack if
any change occurred at the very beginning of samples. These
remaining research questions will be addressed in the future.
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