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Abstract— This study proposes a Direction of Arrival (DoA)-
aided attack detection scheme to identify cyberattacks on net-
worked multi-robot systems. For each agent, a local estimator
is designed to generate robust residuals, and a parametric
statistical tool corresponding to the residuals is elaborated to
build sensitive decision rules. These locally stored residuals and
thresholds are shared between robots via a wireless network,
allowing a multi-robot system to complete its mission in the
presence of one or more compromised agents. The proposed
DoA-aided attack detection scheme is tested on a multi-
robot testbed with a team of 10 robots. Experimental results
demonstrate that the proposed detection scheme enables each
robot to identify malicious activities without shearing the global
coordination.

I. INTRODUCTION

Cybersecurity is of fundamental importance to public
safety and national security, as well as enabling innovation
in cyberspace. While most robotic applications are increas-
ingly dependent upon cyberspace, cybersecurity has not kept
pace with the increase in cyber threats. A typical robotic
application receives and transmits a great deal of information
between sensors, actuators, controllers, and networks via
cyberspace, all providing points of access for attackers. For
this reason, units that govern safety should be protected
from malicious activities, unauthorized access, and dubious
activities, all of which could result in harmful outcomes.
For example, an autonomous system’s navigation system
must be secured because it controls real-time position data
directly linked to the physical behavior of the robot. A real-
world example of a car hacking incident [1] showed the
risks of not addressing these issues in current systems, and
other examples [2], [3] in which unmanned aerial vehicles
were captured and controlled via Global Positioning System
(GPS) signal spoofing provide further proof of vulnerabilities
and their consequences. These studies presented different
cybersecurity issues and analyzed vulnerabilities that could
result in worst-case scenarios.

A cyberattack, or simply an attack, is an action which
undermines the security of robotic systems for malicious
purposes. One approach to to guarantee security is a model-
based one using fault detection, isolation, and reconfigura-
tion methods [4], [5]. This is because a cyberattack can
be treated as a random fault, which is additive or multi-
plicative. However, multi-robot systems suffer from specific
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vulnerabilities that classical control schemes are unable to
fully address, necessitating the development of appropriate
detection and identification techniques. For example, in the
case of multi-robot systems, dependency on a central agent
that transmits measurements and control signals increases the
risk of cyberattacks [6], [7] if any single communication link
is compromised, which would result in global task failure.
To overcome this issue, each agent is required to have the
capabilities of computing its own control input based on
local information from on-board sensors or communicated
by neighbors. Recent work in [8] presents a method that
enables resilient formation control for mobile robot teams
in the presence of defective robots. A different approach
is used in [9], where a local adaptive fault observer and a
distributed fault detection strategy were used to allow each
robot to detect faults in other teammates even when not
directly connected.

The use of an antenna-based approach for GPS spoofing
detection and mitigation was presented in [10], where detec-
tion was based on comparing observed Directions of Arrival
(DoAs) of satellite signals against predicted ones. A similar
technique was implemented in [11] with an antenna array,
and results practically demonstrated that observed DoAs can
be used to identify spoofing attacks. On the other hand,
information security methods from computer science, such
as authentication, integrity, and cryptography techniques, ap-
pear inadequate for ensuring the security of robotic systems
[12]. These methods are implemented without considering
the underlying physical processes and control mechanisms
relevant to robots.

In [13], we developed a path planning strategy that allowed
multiple robots to reach their desired positions using DoA
estimation. This work built upon the bearing estimation
algorithm introduced in [14]. In another paper [15], an attack-
aware multi-sensor integration scheme was presented for the
detection of cyberattacks in autonomous vehicle navigation
systems.

In this paper, we propose a DoA-aided attack detection
method for networked multi-robot systems, with a focus on
possible attacks on the navigation system. The navigation
system is interrelated with the guidance system, which gen-
erates a path to the desired final destination. These systems
should remain fully functional to ensure each robot’s self-
reliance and autonomy for the success of a mission. Thus,
this study will determine if a robot’s navigation system is
being attacked. Any abrupt change or unexpected dynamic
behavior will be identified by a local detection system. We
assume that system alterations are caused by false data



injection attacks, corrupted signal readings, sensor failure,
or any combination of these. The main contributions of this
paper are summarized as follows:

1) Development of a distributed DoA-aided attack detec-
tion scheme for a network of multi-robot systems;

2) Generation of robust residuals with respect to DoA
estimation in the presence of uncertainties;

3) Design of a parametric statistical test that enables the
proposed system to quickly generate a detection alarm
with low false alarm rate;

4) Verification of the proposed detection system in a
multi-robot testbed.

The remainder of this paper presents the core components
of the proposed DoA-aided detection scheme, organized in
four sections. In Section II, multi-robot systems under attack
are modeled as linear time-invariant systems subject to un-
known attacks. In Section III, a DoA-aided attack detection
scheme is developed using residual generation and threshold
determination strategies. In Section IV, the proposed attack
detection system is applied to a networked multi-robot sys-
tem and experimentally validated. Lastly, conclusions and
future research directions are discussed in Section V.

II. PROBLEM FORMULATION

In this section, the mathematical models to describe the
dynamics of a robot in networked multi-robot systems are
presented, and a DoA estimation is developed to achieve
attack detection.

A. Multi-Robot Systems

The system model that we consider is illustrated in Fig.
1. Within a robot, the detection scheme is initiated by
receiving a control input and sensors then measure a sample
of states. These states are fed into the state estimator to
generate predictions. Lastly, the detector determines if there
is an attack on the sensor through comparison between state
estimations and actual measurements. At this time, residual
information are shared across all the robots and each robot
is able to selectively receive information from other robots.

A robot of multi-robot systems is described as a discrete
liner time-invariant (LTI) system represented by a state-space
model. The state-space model with given matrices A,B, and
C is given as

x(k + 1) = Ax(k) +Bu(k) + ν(k) (1)
y(k) = Cx(k) + ω(k), (2)

where x ∈ Rn, y ∈ Rm, and u ∈ Rr represent state vector,
output vector, and control input vector, respectively, and
where ν and ω are process and measurement noise that are
represented by two independent Gaussian noise sequences
with covariance matrices Q and R, respectively. If a sensor
of the i-th robot for i = {1, 2, 3, ..., N} given N number
of multiple robots is being compromised which means that
unknown signals have been injected, added, or modified to

Fig. 1. Schematic overview of the detection system that each robot runs
in the networked multi-robot system.

the sensor, the LTI system (1) and (2) can be written as
follows:

xi(k + 1) = Aixi(k) +Biui(k) + νi(k)

yαi
i (k) = Cixi(k) + αi(k) + ωi(k),

(3)

where αi ∈ Rm denotes additive attacks on a sensor and the
state with the superscript αi represents the system after an
attack occurs. The key idea behind this is that the differences
induced by attacks would be detectable from the proposed
scheme in the presence of uncertainties.

B. Attack Model

False data injection attacks defined in [16] are output
attacks that render an unstable mode (if any) of the unob-
servable system. False data injection attacks refer to attacks
that compromise the integrity of control packets or measure-
ments, and they are cast by altering the behavior of sensors
and actuators. The measurement model of a sensor for false
data injection attack becomes:

zαi
i (k) = Cixi(k) + αi(k) + ωi(k) for k = kα,

where αi is the malicious offset injected by the attacker at
kα.

C. Measurement Models

Two typical navigation solutions of mobile robots, Inertial
Navigation System (INS) and Global Navigation Satellite
System (GNSS) measurements, plus antenna array measure-
ments are considered. An INS uses an Inertial Measurement
Unit (IMU) to track the position, velocity, and orientation of
a vehicle relative to an initial point, orientation, and velocity.
A GNSS provides satellite signals that can be processed in a
GNSS receiver, allowing the receiver to estimate its current
position and velocity. In addition, an antenna array provides
the direction of arrival of received signal which allows a
robot to estimate the bearings of neighboring robots. There
are no states directly affected by the INS measurements,
the GNSS measurements, or the DoA measurements in the



RSS (dB)

‐20

‐25

‐30

‐35

‐40

‐45

‐50

‐55

‐60

‐70

R1

R2

R3

R0Estimated DoA
(R0‐R1)

Estimated DoA
(R0‐R3)

Estimated DoA
(R0‐R2)

Fig. 2. An illustrative example of the DoA estimations for networked multi-
robot systems. R0 estimates the other three robots (R1, R2, and R3) using
the weighted centroid algorithm proposed in [14]. The white dotted lines
indicate actual DoAs and the black arrows indicate estimated DoAs. The
color bar on the right side represents the level of received signal strength.
Bright yellow represents stronger signal strength than blue.

system equation (1), but they interact through the output
equation (2) determined by the measurement models:

zi =

zGNSS,i
zINS,i
zDoA,i

 .
A probabilistic model-based approach is proposed to es-

timate DoA to radio signal sources, which are generated
by other robots in a networked multi-robot systems. This
approach allows a robot to mitigate estimation errors that
are significantly affected by its environments. Thus, a robot
takes Received Signal Strength (RSS) measurements via an
array of directional antennas and then finds the best angle
that is a mean of weighted centroid approaches. A DoA of
the i-th robot for the given number of measurements M is
determined by:

θ̂i(k) =

M∑
j=1

βi(j)θi(j)
[ M∑
j=1

βi(j)
]−1

, (4)

where βi is a weight computed by the RSSs at the j-the
measurement, that is the solution of log10βi = RSSi(j)/γi
with a positive gain γ. This enables a stronger signal strength
with more weight than a weak signal strength. An illustrative
example is shown Fig. 2. In this figure, a robot receives the
DoA information from three other sources and estimates their
local location using (4). The DoA estimation will be used to
design an attack detection scheme in the following section.

III. ATTACK DETECTION AND IDENTIFICATION

In this section, a stochastic system is considered to model
a multi-robot system for the solutions of the attack detection
and identification problems. The task is comprised of two
subsections: Kalman filter-based residual generation and a
decision rule using statistical change detection algorithms.

A. Residual Generation

An innovation filter is designed to determine a stable linear
time-invariant filter with output signals such that:

Condition 1. If there is no attack (αi(k) = 0 for all k),
output vector y will be a zero mean white noise vector that
is not affected by u;

Condition 2. If there is any attack (αi(k) 6= 0 for k ≥ kα),
output vector will not be a zero mean white noise vector that
is affected by the unknown input vector u.

Under the assumption that the system will stay in the
steady-state until attacked, a steady state Kalman filter can
be used. This is because an innovation filter provides a
output prediction yi(k) and ŷi(k). It enables the system
to identify any abrupt changes on sensor measurements.
Estimator dynamics provided by the following steady-state
Kalman filter is considered:

x̂i(k + 1) = Aix̂i(k) +Biui(k) + Li[yi(k)− ŷi(k)],

where Kalman gain is Li = PiC
T
i (CiPiC

T
i +Ri)

−1 with the
covariance matrix given by Pi = Ai[Pi − PiCTi (CiPiCTi +
Ri)

−1CiPi]A
T
i +Qi. Note that the detectability of (Ai, Ci)

ensures the existence of such an estimator. This integration
provides continuous position estimation, and the controller
receives it to achieve the desired path. The following output
feedback controller is considered:

ui(k) = uref,i +Ki[x̂i(k)− xref,i(k)],

where xref,i is the reference state corresponding to the
reference input uref,i and Ki represents the feedback gain
matrix.

The main purpose of the detection capability is to generate
robust residuals to uncertainties and determine sensitive
thresholds to false alarm. As shown in Fig. 1, the detector
determines the system condition at each time step through
statistical hypothesis testing that compares the residual and
threshold generated. The residual is the difference between
the actual measurements and the estimates. A sequence of
the residuals for the i-th robot is defined as

ri(k) = yα,i(k)− ŷi(k). (5)

The residuals evolve with the output estimate given by
ŷi(k) = Cix̂i and the estimation error defined as ei(k) =
xi − x̂i. Then, the output prediction error, which is the
innovation to the standard Kalman filter, is defined as:

ri(k + 1) = Ciei(k + 1) + αi(k + 1),

where the estimation error dynamics are given by ei(k+1) =
(Ai−LiCi)ei(k). It can be used to obtain the new informa-
tion in yi(k), which was not available in yi(1), . . . , yi(k−1).
Therefore, Condition 1 is satisfied when the innovation
vector is a white noise vector that is not affected by u.
Similarly, Condition 2 is also satisfied by the innovation
sequence when the attack information is identified in the
innovation vector.



B. Decision Rule

In our system where the system is modeled as a linear
stochastic model, an attack detection problem can be solved
by sequential change detection algorithm with appropriate
hypotheses. Consider a series of independent and distributed
random vectors z(k) ∼ N (µ,Q). If there is no attack before
an unknown attack time, µ is equal to µ0. On the other hand,
it would change to µ = µ1 6= µ0 if there is an attack at
time kα. The change detection problem is to identify the
difference between when the system is normal (µ = µ0) and
the parameter µ has changed to µ1 due to an attack. Thus, the
detection problem is to distinguish between two hypotheses:
H0–the normal case, H1–the abnormal case where a change
has taken place. For the condition under H0, the parameter
µ0 is computed based on the system model under normal
operation. The cumulative sum (CUSUM) algorithm [17] is
used to detect a known change regardless of the availability
of prior knowledge about the system probability. Build the
following two-sided hypotheses test with µ0 6= µ1:

H0 : z(k) ∼ N (µ0, Q) for k = 1, ..., k

H1 :

{
z(k) ∼ N (µ0, Q) for k = 1, ..., kα − 1

z(k) ∼ N (µ1, Q) for k ≥ kα.

In order to estimate the change time and its magnitude,
the probability density function of a Gaussian vector z is
defined as:

pµ(z) =
1√

(2π)n detQ
exp

(
−1

2
(z − µ)TQ−1(z − µ)

)
,

where µ is the mean and Q is the variance. The log-
likelihood ratio can be represented as:

S(z(k)) = ln
pµ1(z(k))

pµ0
(z(k))

= (µ1 − µ0)
T
Q−1

(
z(k)− 1

2
(µ0 − µ1)

)
.

In case of the system described in (3), the recursive com-
putation of the CUSUM decision function can be performed
as:

Si(k + 1) =

{
max (0, Si(k) + |ri(k + 1)|) if Si(k) ≤ τi(k)
0 and kα = k if Si(k) > τi(k).

(6)

The null hypothesis is rejected if the test statistics Si is
greater than the threshold τi. In this case, the test provides a
global attack alarm time kα that is the smallest time instance
at which Si exceeds a given threshold, and the test starts
over. The null hypothesis is accepted if the test statistics Si
is less than or equal to the threshold τi. The test continues
without stopping in this case. In practice, this test collects
a number of samples and calculates their weighted sum to
detect a significant change in the mean of samples.

IV. EXPERIMENT

This section presents experiments with the Robotarium
testbed to evaluate the proposed DoA-aid attack detection
system. The Robotarium [18], [19] is a multi-robot testbed
developed at the Georgia Institute of Technology.

A. Implementation

An experiment is designed to test if the proposed detection
system identifies attacks on multiple robots. Each of the 10
robots was spawned at a random pose, and tried to complete a
global goal of reaching one common destination. A separate
function from the detection system injected the attacks into
the pose measurements of 3 arbitrarily selected robots when
the global clock reached 7 seconds. A collision avoidance
was executed by default and the equation of motion for the
i-th robot was governed by the following dynamics:

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi,

where xi and yi represent the position of the i-th robot along
its local eastern axis and its local northern axis, respectively,
and θi, vi, and wi are the orientation of the robot, its linear
velocity, and angular velocity, respectively.

For the experiment, the continuous time state equations
were discretized with the sampling time T , which produced
the nonlinear discrete-time state model and the linear mea-
surement model under normal operation. These models were
linearized to correspond with the state-space model in (1) and
(2) by using the state and measurement Jacobian matrices.
In addition, initial states xi(0), state error covariance Pi,
process noise covariance Qi, and measurement noise co-
variance Ri were carefully chosen according to hardware
specifications. An extended Kalman filter was performed
to predict the robot states under normal operation. This
integrated architecture ensured that a continuous navigation
solution was always produced, regardless of the existence
of attacks. Following the state estimation under normal
condition, the system under attack (3) was considered. These
two different measurement models were used for the residual
generation in (5). The decision rules in (6) then determined
if there was a significant change in the robot position at each
time step.

B. Results

The chronological sequence of the robots’ configurations
during the experiment is illustrated in Fig. 3. Each of
the 10 robots set the final destination to (0.9, 0.9) as a
common goal. Then, they were deployed from a random
pose. Actual trajectories of the robots are shown in Fig. 4.
In this figure, three of the robots were clearly set apart from
the team and failed to achieve the common task due to the
attacks while others succeeded. This was mainly because
each robot computed control commands completely based
on its local information so that each robot was unable to
verify if the system was functioning properly unless it shared



(a) Initial pose (b) 9 seconds (c) 18 seconds

(d) 27 seconds (e) 36 seconds (f) Final pose

Fig. 3. Robot configurations by time. (a) Each of the 10 robots was initially deployed at a random pose. (b) A random amount of attacks with boundary
limits were injected to 3 random robots at 7 seconds. (c) Robots 3, 7, and 10 were heading to new destinations. (d) The compromised robots were separated
from the team. (e) The compromised robots were unable to verify if the current control input was proper unless each robot sheared the global position of
the entire team. (f) The compromised robots stopped at incorrect destinations while the rest of the team achieved the common task.
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Fig. 4. Actual trajectories of the robots during the experiment. Each robot
started from its initial location and followed its desired path to reach a
common point. The final location of each robot is illustrated using triangles.
Injected attacks caused the failure of Robots 3, 7, and 10 in the red triangle
while other robots represented in the blue triangle succeeded.

the global coordination. For example, the position tracking
error of the robots in Fig. 5 converges to zero even though
attacks occurred. Thus, it was unable to identify the system’s
functionality based on this information.

However, the evolution of the test statistics in Fig. 6 clearly
shows that there were significant changes to Robots 3, 7, and
10 that caused the residual to jump the upper bound of the
threshold around the 10 second mark. The test statistics were
calculated by (6), and the upper and lower bounds of the
threshold were generated by using the weighted sum of the
first 15 samples of sensor measurements. Based upon these
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Fig. 5. Position tracking error of the robots. The control commands for each
robot performed well but no evidence of malicious activities was indicated
here. This was because the current control scheme was unable to identify
any attack without the aid of the detection system.

parameters, the detector in each robot determined that there
was an attack when the residual went above the upper limit of
the threshold, and the corresponding time was automatically
generated. The generated times were tα,3 = 9.9 sec, tα,7 =
9.4 sec, tα,10 = 8.5 sec., showing relatively quick detection
because they were only a few sampling steps behind the
actual attack. In addition, there were a number of ups and
downs for Robots 1, 2, 4, 5, 6, 8, and 9 prior to the attack,
but they stayed within the threshold boundary, allowing the
detection algorithm to avoid a false alarm. Thus, based on the
experiment, using the proposed DoA-aided attack detection
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Fig. 6. Test statistic evolutions of the robots. In (c), (g), and (j), the proposed system identified a significant change of the residuals that exceeded the
upper limit of the threshold. On the other hand, there was no attack alarm for the rest of the robots.

scheme provides a solution to detect attacks on multiple
robots as quickly as possible.

V. CONCLUSIONS

This research has presented a direction for arrival-aided
cyberattack detection on networked multi-robot systems.
Starting with a state-space model of a system under attack,
a parametric statistical tool to generate a decision rule was
developed with an innovation filter. This approach provided
real-time attack detection for a robot in a networked multi-
robot system, protecting against possible cyberattacks. A
team of robots with the presence of multiple compromised
agents was employed on a multi-robot testbed to test the
performance of the proposed scheme.
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